cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129628 Inverse Moebius transform of A001511.

Original entry on oeis.org

1, 3, 2, 6, 2, 6, 2, 10, 3, 6, 2, 12, 2, 6, 4, 15, 2, 9, 2, 12, 4, 6, 2, 20, 3, 6, 4, 12, 2, 12, 2, 21, 4, 6, 4, 18, 2, 6, 4, 20, 2, 12, 2, 12, 6, 6, 2, 30, 3, 9, 4, 12, 2, 12, 4, 20, 4, 6, 2, 24, 2, 6, 6, 28, 4, 12, 2, 12, 4, 12, 2, 30, 2, 6, 6, 12, 4, 12, 2, 30, 5, 6, 2, 24, 4, 6, 4, 20
Offset: 1

Views

Author

Ralf Stephan, May 31 2007

Keywords

Comments

Dirichlet convolution of A000005 with A209229. - Ridouane Oudra, Jul 25 2025

Crossrefs

Programs

  • Maple
    seq(add(padic[ordp](2*d, 2), d in numtheory[divisors](n)), n=1..100); # Ridouane Oudra, Sep 30 2024
  • Mathematica
    f[p_, e_] := If[p==2, (e+1)*(e+2)/2, e+1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
  • PARI
    a(n)={sumdiv(n, d, 1 + valuation(d, 2))} \\ Andrew Howroyd, Aug 04 2018

Formula

a(2n) = a(n) + A000005(2n), a(2n+1) = A000005(2n+1).
Dirichlet g.f.: zeta(s)^2 * 2^s/(2^s-1). - Ralf Stephan, Jun 17 2007, corrected by Vaclav Kotesovec, Feb 02 2019
a(n) = Sum_{d|n} A001511(d). - Andrew Howroyd, Aug 04 2018
Sum_{k=1..n} a(k) ~ 2*n * (2*gamma - 1 + log(n/2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = e+1 for p > 2. - Amiram Eldar, Sep 30 2020
From Ridouane Oudra, Sep 30 2024: (Start)
a(n) = Sum_{i=0..A007814(n)} tau(n/2^i).
a(n) = Sum_{d|2*n} A007814(d).
a(n) = (1/2)*A001511(n)*A099777(n).
a(n) = (1/2)*(A001511(n) + 1)*A000005(n).
a(n) = A115364(n)*A001227(n). (End)