cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A129354 Duplicate of A129628.

Original entry on oeis.org

1, 3, 2, 6, 2, 6, 2, 10, 3, 6, 2, 12, 2, 6, 4, 15, 2, 9, 2, 12, 4, 6, 2, 20, 3, 6, 4, 12, 2, 12, 2, 21, 4, 6, 4, 18, 2, 6, 4, 20, 2, 12, 2, 12, 6, 6, 2, 30, 3, 9, 4, 12, 2, 12, 4, 20, 4, 6, 2, 24, 2, 6, 6, 28, 4, 12, 2, 12, 4
Offset: 1

Views

Author

Keywords

A129353 A051731 * A115361.

Original entry on oeis.org

1, 2, 1, 1, 0, 1, 3, 2, 0, 1, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 4, 3, 0, 2, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 2, 3, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 10 2007

Keywords

Comments

The inverse Moebius transform of the first column of A115361 which is A209229 gives the first column of this sequence.

Examples

			First few rows of the triangle are:
  1;
  2, 1;
  1, 0, 1;
  3, 2, 0, 1;
  1, 0, 0, 0, 1;
  2, 1, 2, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  4, 3, 0, 2, 0, 0, 0, 1;
  ...
		

Crossrefs

Column 1 is A001511.
Row sums are A129628 (inverse Moebius transform of A001511).

Programs

  • Maple
    A129353 := proc(n,k)
            add( A051731(n,j)*A115361(j-1,k-1),j=k..n) ;
    end proc: # R. J. Mathar, Jul 14 2012
  • Mathematica
    T[n_, k_] := If[Mod[n, k] != 0, 0, 1 + IntegerExponent[n/k, 2]];
    Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2020, from PARI *)
  • PARI
    T(n, k)={if(n%k, 0, 1 + valuation(n/k,2))} \\ Andrew Howroyd, Aug 04 2018

Formula

T(n,k) = A001511(n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 04 2018

A328484 Dirichlet g.f.: zeta(s)^2 / (1 - 3^(-s)).

Original entry on oeis.org

1, 2, 3, 3, 2, 6, 2, 4, 6, 4, 2, 9, 2, 4, 6, 5, 2, 12, 2, 6, 6, 4, 2, 12, 3, 4, 10, 6, 2, 12, 2, 6, 6, 4, 4, 18, 2, 4, 6, 8, 2, 12, 2, 6, 12, 4, 2, 15, 3, 6, 6, 6, 2, 20, 4, 8, 6, 4, 2, 18, 2, 4, 12, 7, 4, 12, 2, 6, 6, 8, 2, 24, 2, 4, 9, 6, 4, 12, 2, 10, 15, 4, 2, 18, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Inverse Moebius transform of A051064.
Dirichlet convolution of A000005 with characteristic function of powers of 3.

Crossrefs

Programs

  • Maple
    seq(add(padic[ordp](3*d, 3), d in numtheory[divisors](n)), n=1..100); # Ridouane Oudra, Sep 30 2024
  • Mathematica
    Table[DivisorSum[n, IntegerExponent[3 #, 3] &], {n, 1, 85}]
    nmax = 85; CoefficientList[Series[Sum[Sum[x^(i 3^j)/(1 - x^(i 3^j)), {j, 0, Floor[Log[3, nmax]] + 1}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := If[p == 3, (e + 1)*(e + 2)/2, e + 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=0} x^(i*3^j) / (1 - x^(i*3^j)).
a(n) = Sum_{d|n} A051064(d).
Sum_{k=1..n} a(k) ~ 3*n*(log(n)/2 - log(3)/4 - 1/2 + gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(p^e) = (e+1)*(e+2)/2 if p=3, and e+1 otherwise. - Amiram Eldar, Dec 02 2020
From Ridouane Oudra, Sep 30 2024: (Start)
a(n) = Sum_{i=0..A007949(n)} tau(n/3^i).
a(n) = Sum_{d|3*n} A007949(d).
a(n) = (1/2)*A051064(n)*A372713(n).
a(n) = (1/2)*(A051064(n) + 1)*A000005(n).
a(n) = A373438(n)*A035191(n). (End)

A349693 Dirichlet convolution of the ruler function (A001511) with itself.

Original entry on oeis.org

1, 4, 2, 10, 2, 8, 2, 20, 3, 8, 2, 20, 2, 8, 4, 35, 2, 12, 2, 20, 4, 8, 2, 40, 3, 8, 4, 20, 2, 16, 2, 56, 4, 8, 4, 30, 2, 8, 4, 40, 2, 16, 2, 20, 6, 8, 2, 70, 3, 12, 4, 20, 2, 16, 4, 40, 4, 8, 2, 40, 2, 8, 6, 84, 4, 16, 2, 20, 4, 16, 2, 60, 2, 8, 6, 20, 4, 16, 2, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Comments

Dirichlet convolution of A000005 with A104117. - Ridouane Oudra, Jul 23 2025

Crossrefs

Programs

  • Maple
    a:= n-> (f-> add(f(d)*f(n/d), d=numtheory[divisors](n)))(k-> padic[ordp](2*k, 2)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Nov 25 2021
  • Mathematica
    Table[Sum[IntegerExponent[2 d, 2] IntegerExponent[2 n/d, 2], {d, Divisors[n]}], {n, 1, 80}]
    f[p_, e_] := If[p == 2, Binomial[e + 3, 3], e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 80] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A001511(n) = (1+valuation(n,2));
    A349693(n) = sumdiv(n,d,A001511(n/d)*A001511(d)); \\ Antti Karttunen, Nov 25 2021
    
  • Python
    from sympy import divisor_count
    def A349693(n): return divisor_count(n)*(m:=(n&-n).bit_length()+1)*(m+1)//6 # Chai Wah Wu, Jul 13 2022

Formula

Dirichlet g.f.: zeta(s)^2 * 4^s / (2^s-1)^2.
a(n) = Sum_{d|n} A001511(d) * A001511(n/d).
a(n) = Sum_{d|n} A000217(A001511(d)).
Multiplicative with a(p^e) = binomial(e+3,3) if p = 2 and e+1 otherwise. - Amiram Eldar, Nov 25 2021
Sum_{k=1..n} a(k) ~ 4*n*(log(n) - 1 + 2*gamma - 2*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 26 2021
From Ridouane Oudra, Jul 23 2025: (Start)
a(n) = Sum_{i=0..A007814(n)} (i+1)*tau(n/2^i).
a(n) = Sum_{d|n} A115364(d).
a(n) = (1/6)*A090739(n)*A085058(n-1)*A000005(n).
a(n) = (1/6)*A001511(n)*A090739(n)*A099777(n).
a(n) = (1/3)*A115364(n)*A372784(n).
a(n) = A001227(n)*A000292(A001511(n)).
a(2*n+1) = tau(2*n+1).
a(2^k*(2*n+1)) = binomial(k+3, 3)*tau(2*n+1), for k, n >= 0. (End)
Showing 1-4 of 4 results.