cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129634 Least nonnegative m such that T(n) + T(m) is prime, where T(n) = n*(n+1)/2.

Original entry on oeis.org

2, 1, 0, 1, 1, 7, 4, 1, 1, 7, 3, 1, 1, 3, 16, 13, 1, 4, 4, 1, 1, 4, 4, 1, 46, 3, 7, 1, 2, 7, 16, 2, 13, 4, 3, 1, 13, 3, 4, 22, 1, 16, 16, 1, 1, 7, 3, 1, 10, 3, 7, 1, 2, 7, 16, 2, 1, 4, 4, 13, 1, 4, 16, 1, 1, 16, 4, 2, 1, 16, 8, 1, 10, 3, 7, 1, 1, 31, 7, 2, 13, 4, 4, 10, 1, 8, 7, 13, 1, 43, 16, 5, 25, 16
Offset: 0

Views

Author

Jonathan Vos Post, May 31 2007

Keywords

Comments

What is the simplest proof that this is defined for all nonzero n?
It appears that a(n)A130504 provides evidence that a(n) exists for all n. - T. D. Noe, Jun 04 2007

Examples

			a(6) = 4 because T(4) = 10 is the least triangular number whose sum with T(6) = 21 is prime, since {21+0 = 3*7, 21+3 = 2^3*3, 21+6 = 3^3} are all composite, but 21+10 = 31 is prime.
		

Crossrefs

Cf. A069003 (for square numbers).

Programs

  • Mathematica
    nn=100; tri=Range[0,nn]Range[nn+1]/2; Table[k=1; While[k<=Length[tri] && !PrimeQ[tri[[k]]+tri[[n]]], k++ ]; If[k<=Length[tri], k-1,0], {n,Length[tri]}] (* T. D. Noe, Jun 04 2007 *)

Formula

a(n) = Min{m: m*(m+1)/2 + n*(n+1)/2 is prime}. a(n) = Min{m: A000217(m) + A000217(n) is an element of A000040}.

Extensions

Corrected and extended by T. D. Noe, Jun 04 2007