A129638 Number of meaningful differential operations of the k-th order on the space R^11.
11, 21, 40, 77, 148, 286, 552, 1069, 2068, 4010, 7768, 15074, 29225, 56736, 110055, 213705, 414676, 805314, 1562977, 3035514, 5892257, 11443768, 22215753, 43146726, 83766396, 162686691, 315860810, 613439352, 1191054193, 2313133481
Offset: 11
Links
- B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- B. Malesevic and I. Jovovic, The Compositions of the Differential Operations and Gateaux Directional Derivative , arXiv:0706.0249 [math.CO], 2007.
- Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation
- Index entries for linear recurrences with constant coefficients, signature (1,5,-4,-6,3,1).
Programs
-
Maple
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=11; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
Mathematica
LinearRecurrence[{1, 5, -4, -6, 3, 1}, {11, 21, 40, 77, 148, 286}, 30] (* Jean-François Alcover, Oct 10 2017 *)
Formula
a(k+6) = a(k+5) +5*a(k+4) -4*a(k+3) -6*a(k+2) +3*a(k+1) +a(k).
G.f.: -x^11*(6*x^5+21*x^4-24*x^3-36*x^2+10*x+11)/(x^6+3*x^5-6*x^4-4*x^3+5*x^2+x-1). [Colin Barker, Jul 08 2012]
Extensions
More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 20 2007
More terms from Joseph Myers, Dec 23 2008
Comments