A129647 Largest order of a permutation of n elements with exactly 2 cycles. Also the largest LCM of a 2-partition of n.
0, 1, 2, 3, 6, 5, 12, 15, 20, 21, 30, 35, 42, 45, 56, 63, 72, 77, 90, 99, 110, 117, 132, 143, 156, 165, 182, 195, 210, 221, 240, 255, 272, 285, 306, 323, 342, 357, 380, 399, 420, 437, 462, 483, 506, 525, 552, 575, 600, 621, 650, 675, 702, 725, 756, 783, 812, 837
Offset: 1
Examples
a(26) = 165 because 26 = 11+15 and lcm(11,15) = 165 is maximal.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to lcm's
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Crossrefs
Programs
-
Maple
a:= n-> `if`(n<2, 0, max(seq(ilcm(i, n-i), i=1..n/2))): seq(a(n), n=1..60); # Alois P. Heinz, Feb 16 2013
-
Mathematica
Join[{0}, Rest[With[{n = 60}, Max[LCM @@@ IntegerPartitions[#, {2}]] & /@ Range[1, n]]]] (* Modified by Philip Turecek, Mar 25 2023 *) a[n_] := If[n<2, 0, Max[Table[LCM[i, n-i], {i, 1, n/2}]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
Formula
G.f.: t^2*(1 + 2*t^3 - 5*t^4 + 8*t^5 - 4*t^6)/((1-t)^2*(1-t^4)). - Mamuka Jibladze, Aug 22 2019
Comments