A214297 a(0)=-1, a(1)=0, a(2)=-3; thereafter a(n+2) - 2*a(n+1) + a(n) has period 4: repeat -4, 8, -4, 2.
-1, 0, -3, 2, 3, 6, 5, 12, 15, 20, 21, 30, 35, 42, 45, 56, 63, 72, 77, 90, 99, 110, 117, 132, 143, 156, 165, 182, 195, 210, 221, 240, 255, 272, 285, 306, 323, 342, 357, 380, 399, 420, 437, 462, 483, 506, 525, 552, 575, 600, 621, 650, 675, 702, 725, 756, 783, 812, 837, 870, 899, 930, 957, 992, 1023, 1056, 1085, 1122, 1155, 1190
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Programs
-
Magma
[(2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
-
Maple
A214297 := proc(n) option remember; if n <=5 then op(n+1,[-1,0,-3,2,3,6]) ; else 2*procname(n-1)-procname(n-2)+procname(n-4)-2*procname(n-5)+procname(n-6) ; end if; end proc: # R. J. Mathar, Jun 28 2013
-
Mathematica
Table[(2 n^2 - 11 - 9 (-1)^n + 6 ((-1)^((2 n + 1 - (-1)^n)/4) + (-1)^((2 n - 1 + (-1)^n)/4)))/8, {n, 0, 69}] (* or *) CoefficientList[Series[-(1 - 2 x + 4 x^2 - 8 x^3 + 3 x^4)/((1 - x)^2*(1 - x^4)), {x, 0, 69}], x] (* Michael De Vlieger, Mar 24 2017 *)
-
PARI
vector(100, n, n--; (2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8) \\ G. C. Greubel, Sep 19 2018
Formula
a(k+4) - a(k) = 2*k + 4.
a(k+2) - a(k-2) = 2*k.
a(k+6) - a(k-6) = 6*k.
a(k+10) - a(k-10) = 10*k.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(2*k) = -1, -3, followed by 3, 5, 15, 21, 35, 45, ... (A142717);
a(2*k+1) = k*(k+1) (see A002378).
G.f. -( 1-2*x+4*x^2-8*x^3+3*x^4 )/( (1-x)^2*(1-x^4) ). - R. J. Mathar, Jul 17 2012; edited by N. J. A. Sloane, Jul 22 2012
From R. J. Mathar, Jun 28 2013: (Start)
a(4*k) = A000466(k);
a(4*k+1) = A002943(k);
a(4*k+2) = A078371(k-1) for k>0;
a(4*k+3) = A002939(k+1). (End)
a(n) = (2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8. - Luce ETIENNE, Oct 27 2016
Extensions
Edited by N. J. A. Sloane, Jul 22 2012
Comments