cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A129647 Largest order of a permutation of n elements with exactly 2 cycles. Also the largest LCM of a 2-partition of n.

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 12, 15, 20, 21, 30, 35, 42, 45, 56, 63, 72, 77, 90, 99, 110, 117, 132, 143, 156, 165, 182, 195, 210, 221, 240, 255, 272, 285, 306, 323, 342, 357, 380, 399, 420, 437, 462, 483, 506, 525, 552, 575, 600, 621, 650, 675, 702, 725, 756, 783, 812, 837
Offset: 1

Views

Author

Nickolas Reynolds (nickels(AT)gmail.com), Apr 25 2007

Keywords

Comments

a(n) is asymptotic to (n^2)/4.
a(n) = A116921(n)*A116922(n). - Mamuka Jibladze, Aug 22 2019

Examples

			a(26) = 165 because 26 = 11+15 and lcm(11,15) = 165 is maximal.
		

Crossrefs

Maximal LCM of k positive integers with sum n for k = 2..7: this sequence (k=2), A129648 (k=3), A129649 (k=4), A129650 (k=5), A355367 (k=6), A355403 (k=7).

Programs

  • Maple
    a:= n-> `if`(n<2, 0, max(seq(ilcm(i, n-i), i=1..n/2))):
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 16 2013
  • Mathematica
    Join[{0}, Rest[With[{n = 60}, Max[LCM @@@ IntegerPartitions[#, {2}]] & /@ Range[1, n]]]] (* Modified by Philip Turecek, Mar 25 2023 *)
    a[n_] := If[n<2, 0, Max[Table[LCM[i, n-i], {i, 1, n/2}]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)

Formula

G.f.: t^2*(1 + 2*t^3 - 5*t^4 + 8*t^5 - 4*t^6)/((1-t)^2*(1-t^4)). - Mamuka Jibladze, Aug 22 2019

A129648 Largest order of a permutation of n elements with exactly 3 cycles. Also the largest LCM of a 3-partition of n.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 6, 12, 15, 30, 21, 60, 35, 84, 105, 140, 84, 210, 165, 280, 315, 360, 385, 504, 495, 630, 693, 792, 819, 990, 1001, 1170, 1287, 1430, 1365, 1716, 1683, 2002, 2145, 2310, 2431, 2730, 2805, 3120, 3315, 3570, 3705, 4080, 4199, 4560, 4845, 5168
Offset: 1

Views

Author

Nickolas Reynolds (nickels(AT)gmail.com), Apr 25 2007

Keywords

Comments

a(n) is asymptotic to (n^3)/27.

Examples

			a(9) = 15 because 9 = 5+3+1 and lcm(1,3,5) = 15 is maximal.
		

Crossrefs

Maximal LCM of k positive integers with sum n for k = 2..7: A129647 (k=2), this sequence (k=3), A129649 (k=4), A129650 (k=5), A355367 (k=6), A355403 (k=7).

Programs

  • Mathematica
    Max[LCM @@@ Compositions[ #, 3]] & /@ Range[1, n]

A355319 Maximal GCD of four positive integers with sum n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 3, 4, 1, 3, 1, 5, 3, 2, 1, 6, 5, 2, 3, 7, 1, 6, 1, 8, 3, 2, 7, 9, 1, 2, 3, 10, 1, 7, 1, 11, 9, 2, 1, 12, 7, 10, 3, 13, 1, 9, 11, 14, 3, 2, 1, 15, 1, 2, 9, 16, 13, 11, 1, 17, 3, 14, 1, 18, 1, 2, 15, 19, 11, 13, 1, 20, 9, 2, 1, 21, 17, 2, 3, 22, 1, 18, 13, 23, 3, 2, 19, 24, 1, 14, 11, 25
Offset: 4

Views

Author

Wesley Ivan Hurt, Jun 29 2022

Keywords

Crossrefs

Maximal GCD of k positive integers with sum n for k = 2..10: A032742 (k=2,n>=2), A355249 (k=3), this sequence (k=4), A355366 (k=5), A355368 (k=6), A355402 (k=7), A354598 (k=8), A354599 (k=9), A354601 (k=10).

Programs

  • Mathematica
    a[n_] := GCD @@@ IntegerPartitions[n, {4}] // Max;
    Table[a[n], {n, 4, 100}] (* Jean-François Alcover, Sep 21 2022 *)

A129650 Largest order of a permutation of n elements with exactly 5 cycles. Also the largest LCM of a 5-partition of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 6, 6, 12, 15, 30, 30, 60, 60, 84, 105, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 2310, 1540, 4620, 2520, 5460, 4620, 9240, 5460, 13860, 9240, 16380, 15015, 27720, 13860, 32760, 19635, 40040, 45045, 51480, 32760, 72072, 58905
Offset: 1

Views

Author

Nickolas Reynolds (nickels(AT)gmail.com), Apr 25 2007

Keywords

Comments

a(n) is asymptotic to n^5/3125.

Examples

			a(29)=1540 because 29 = 11+7+5+4+2 and lcm(2,4,5,7,11) = 1540 is maximal.
		

Crossrefs

Maximal LCM of k positive integers with sum n for k = 2..7: A129647 (k=2), A129648 (k=3), A129649 (k=4), this sequence (k=5), A355367 (k=6), A355403 (k=7).

Programs

  • Mathematica
    Max[LCM @@@ Compositions[ #, 5]] & /@ Range[1, n]

A355367 Maximal LCM of six positive integers with sum n.

Original entry on oeis.org

1, 2, 3, 6, 6, 12, 15, 30, 30, 60, 60, 84, 105, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 2310, 2310, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 13860, 16380, 16380, 30030, 27720, 60060, 32760, 40040, 60060, 120120, 60060, 180180, 120120, 157080, 120120, 360360
Offset: 6

Views

Author

Wesley Ivan Hurt, Jun 29 2022

Keywords

Crossrefs

Cf. A008881.
Maximal LCM of k positive integers with sum n for k = 2..7: A129647 (k=2), A129648 (k=3), A129649 (k=4), A129650 (k=5), this sequence (k=6), A355403 (k=7).

Programs

  • Mathematica
    Table[Max[LCM@@@IntegerPartitions[n,{6}]],{n,6,60}] (* Harvey P. Dale, Jun 23 2023 *)
  • PARI
    a(n) = { my (v=0); forpart(p=n, v=max(v, lcm(Vec(p))),, [6,6]); v } \\ Rémy Sigrist, Jul 01 2022

A355403 Maximal LCM of seven positive integers with sum n.

Original entry on oeis.org

1, 2, 3, 6, 6, 12, 15, 30, 30, 60, 60, 84, 105, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 2310, 2310, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 13860, 16380, 16380, 30030, 30030, 60060, 60060, 60060, 60060, 120120, 120120, 180180, 180180, 180180, 180180
Offset: 7

Views

Author

Wesley Ivan Hurt, Jun 30 2022

Keywords

Crossrefs

Maximal LCM of k positive integers with sum n for k = 2..7: A129647 (k=2), A129648 (k=3), A129649 (k=4), A129650 (k=5), A355367 (k=6), this sequence (k=7).

A129651 a(n) is the smallest position k at which b_n(i)=k, where b_n(m) is the largest order of a permutation of m elements with exactly n cycles.

Original entry on oeis.org

1, 6, 37, 126, 287, 540, 895
Offset: 1

Views

Author

Nickolas Reynolds (nickels(AT)gmail.com), Apr 25 2007, Apr 26 2007, Apr 27 2007

Keywords

Examples

			a(2)=6 because b_2(6)=5 and b_2(i)<b_2(i+1) for all i>=6. (That is, the largest order of a permutation of i elements with exactly 2 cycles is monotonic increasing starting at i=6.)
		

Crossrefs

Showing 1-7 of 7 results.