cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129689 A007318 * A129688.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 15, 12, 8, 4, 1, 31, 27, 20, 12, 5, 1, 63, 58, 47, 32, 17, 6, 1, 127, 121, 105, 79, 49, 23, 7, 1, 255, 248, 226, 184, 128, 72, 30, 8, 1, 511, 503, 474, 410, 312, 200, 102, 38, 9, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 28 2007

Keywords

Comments

Row sums = A057711: (1, 2, 6, 16, 40, 96, ...). A129690 = A129688 * A007318.
Riordan array ( (1-2*x+2*x^2)/((1-x)*(1-2*x)), x/(1-x) ). - Peter Bala, Mar 21 2018

Examples

			First few rows of the triangle are:
   1;
   1,  1;
   3,  2,  1;
   7,  5,  3,  1;
  15, 12,  8,  4,  1;
  31, 27, 20, 12,  5,  1;
  63, 58, 47, 32, 17,  6,  1;
  ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12],n->List([0..n],k->Binomial(n,k)+Sum([2..n],i->2^(i-1)*Binomial(n-i,n-k-i))))); # Muniru A Asiru, Mar 22 2018
  • Maple
    C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if;
    end proc:
    for n from 0 to 12 do
       seq(C(n, n-k) + add(2^(i-1)*C(n-i, n-k-i), i = 2..n), k = 0..n)
    end do; #  Peter Bala, Mar 21 2018
  • Mathematica
    T[n_, k_] := Binomial[n, n-k] + Sum[2^(i-1) Binomial[n-i, n-k-i], {i, 2, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 10 2019 *)
  • Sage
    # uses[riordan_array from A256893]
    # After Peter Bala.
    riordan_array((1-2*x+2*x^2)/((1-x)*(1-2*x)), x/(1-x), 8) # Peter Luschny, Mar 21 2018
    

Formula

Binomial transform of A129688. A007318 * A129688 as infinite lower triangular matrices.
From Peter Bala, Mar 21 2018: (Start)
T(n,k) = C(n, n-k) + Sum_{i = 2..n} 2^(i-1)*C(n-i, n-k-i), where C(n,k) = n!/(k!*(n-k)!) for 0 <= k <= n, otherwise 0.
Exp(x) * the e.g.f. for row n = the e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(7 + 5*x + 3*x^2/2! + x^3/3!) = 7 + 12*x + 20*x^2/2! + 32*x^3/3! + 49*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1-x) ).
(End)