cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129716 n! times partial sum of the sequence (1,Bernoulli numbers).

Original entry on oeis.org

1, 2, 3, 10, 40, 196, 1176, 8352, 66816, 589248, 5892480, 67841280, 814095360, 9007096320, 126099348480, 3417110323200, 54673765171200, -1593137026252800, -28676466472550400, 6142121597716070400, 122842431954321408000, -24453765000305786880000
Offset: 0

Views

Author

Paul Curtz, Jun 02 2007

Keywords

Examples

			The sequence of 1 followed by Bernoulli numbers is 1, 1, -1/2, 1/6,0, -1/30, 0, 1/42, .... (Cf. A027641, A027642). Its partial sums are 1, 2, 3/2, 5/3, 5/3, ... Multiplication by n! for n=0,1,2,3,... yields a(n).
		

Programs

  • GAP
    List([0..25], n-> Factorial(n)*(1 + Sum([0..n-1], j-> Bernoulli(j)) ) ); # G. C. Greubel, Dec 03 2019
  • Magma
    [1] cat [Factorial(n)*(1 + (&+[Bernoulli(k): k in [0..n-1]]) ): n in [1..25]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    A129716 := proc(n) n!*(1+add(bernoulli(i),i=0..n-1)); end: seq(A129716(n),n=0..40) ; # R. J. Mathar, Feb 20 2008
  • Mathematica
    max = 21; Accumulate[ Table[ If[n == 0, 1, BernoulliB[n-1]], {n, 0, max}]]*Range[0, max]! (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    vector(26, n, (n-1)!*(1 + sum(j=0,n-2, bernfrac(j))) ) \\ G. C. Greubel, Dec 03 2019
    
  • Sage
    [factorial(n)*(1 + sum(bernoulli(k) for k in (0..n-1)) ) for n in (0..25)] # G. C. Greubel, Dec 03 2019
    

Formula

a(n) = n!*(1 + Sum_{i=0..n-1} Bernoulli(i)). - R. J. Mathar, Feb 20 2008

Extensions

More terms from R. J. Mathar, Feb 20 2008