cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129769 Exponents m(i) for exceptional groups with best guesses for E7 1/2 and E9 added (there is a problem with the dimension of E9 as no sum of odd numbers will equal the 484, I get 483): triangular sequence is: A1,G2,F4,E6,E7 E7 1/2,E8,E9.

Original entry on oeis.org

1, 1, 5, 1, 5, 7, 11, 1, 4, 5, 7, 8, 11, 1, 5, 7, 9, 11, 13, 17, 1, 6, 9, 11, 13, 15, 17, 19, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 17, 19, 23, 29, 31, 51, 55
Offset: 1

Views

Author

Roger L. Bagula, May 16 2007

Keywords

Comments

Betti number row sums: Table[Apply[Plus, CoefficientList[Expand[Product[(1 + t^(2*a[i][[n]] + 1)), {n, 1, Length[a[i]]}]], t]], {i, 0, 7}] {2, 4, 16, 64, 128, 256, 256, 512} Group dimensions sums: b[n_] = 2*a[n] + 1 Table[Apply[Plus, b[n]], {n, 0, 7}] {3, 14, 52, 78, 133, 190, 248, 483}.
From these exponents it is possible to get Poincaré polynomial estimates for the new E7 1/2 and E8 that best fit the pattern of the known exponents.

References

  • J. M. Landsberg, The sextonions and E_{7 1/2} (with L.Manivel) (Advances in Math 201(2006) p143 - 179) page 22; J. M. Landsberg, http://www.math.tamu.edu/~jml/LMsexpub.pdf: The sextonions and E_{7 1/2}
  • Armand Borel's Essays in History of Lie Groups and Algebraic Groups: gives G2 PoincarĂ© polynomial, History of Mathematics, V. 21; http://www.amazon.com/Essays-History-Groups-Algebraic-Mathematics/dp/0821802887/ref=pd_rhf_p_3/104-0029617-0633535

Crossrefs

Programs

  • Mathematica
    a[0] = {1}; a[1] = {1, 5}; a[2] = {1, 5, 7, 11}; a[3] = {1, 4, 5, 7, 8, 11}; a[4] = {1, 5, 7, 9, 11, 13, 17}; a[5] = {1, 6, 9, 11, 13, 15, 17, 19}; a[6] = {1, 7, 11, 13, 17, 19, 23, 29}; a[7] = {1, 11, 17, 19, 23, 29, 31, 51, 55};

Formula

a(0) = {1}; a(1) = {1, 5}; a(2) = {1, 5, 7, 11}; a(3) = {1, 4, 5, 7, 8, 11}; a(4) = {1, 5, 7, 9, 11, 13, 17}; a(5) = {1, 6, 9, 11, 13, 15, 17, 19}; a(6) = {1, 7, 11, 13, 17, 19, 23, 29}; a(7) = {1, 11, 17, 19, 23, 29, 31, 51, 55};