A129776 Number of maximally-clustered hexagon-avoiding permutations in S_n; the maximally-clustered hexagon-avoiding permutations are those that avoid 3421, 4312, 4321, 46718235, 46781235, 56718234, 56781234.
1, 1, 2, 6, 21, 78, 298, 1157, 4535, 17872, 70644, 279704, 1108462, 4395045, 17431206, 69144643, 274300461, 1088215370, 4317321235, 17128527716, 67956202025, 269612504850, 1069675361622, 4243893926396, 16837490364983, 66802139457897, 265035151393777
Offset: 0
Keywords
Examples
a(8)=4535 because there are 4535 permutations of size 8 that avoid 3421, 4312, 4321, 46718235, 46781235, 56718234 and 56781234.
References
- Jozsef Losonczy, Maximally clustered elements and Schubert varieties, Ann. Comb. 11 (2007), no. 2, 195-212.
Links
- H. Denoncourt and B. Jones, The enumeration of maximally clustered permutations.
- B. Jones, Kazhdan--Lusztig polynomials for maximally-clustered hexagon-avoiding permutations.
Programs
-
PARI
lista(nt) = { my(x = 'x + 'x*O('x^nt) ); P = (3*x^6+x^5-5*x^4+7*x^3-5*x^2+x) / (-3*x^6+4*x^5+8*x^4-14*x^3+15*x^2-7*x+1); print(Vec(P));} \\ Michel Marcus, Mar 17 2013
Formula
G.f.: 1+(3x^6+x^5-5x^4+7x^3-5x^2+x) / (-3x^6+4x^5+8x^4-14x^3+15x^2-7x+1).
Extensions
More terms from Michel Marcus, Mar 17 2013
a(0)=1 prepended by Alois P. Heinz, Jan 12 2025
Comments