A129786 Least k such that 2^(2^n)+k is prime.
0, 1, 1, 1, 1, 15, 13, 51, 297, 75, 643, 981, 1761, 897, 2775, 118113, 44061, 5851, 18531, 189093, 69661
Offset: 0
Links
- C. K. Caldwell, The Prime Glossary, Fermat prime.
- Eric Weisstein's World of Mathematics, Fermat Number.
- Eric Weisstein's World of Mathematics, Fermat Prime.
Programs
-
Mathematica
a[n_] := Module[{k = 0}, While[! PrimeQ[2^(2^n) + k], k++]; k]; Array[a, 12, 0] (* Amiram Eldar, Jun 11 2022 *)
-
PARI
a(n)=if(n<0,0,s=0;while(isprime(2^(2^n)+s)==0,s++);s)
-
Python
from sympy import nextprime def a(n): m = 2**(2**n); return nextprime(m-1) - m print([a(n) for n in range(12)]) # Michael S. Branicky, Jun 12 2022
Comments