A129825 a(n) = n!*Bernoulli(n-1), n > 2; a(0)=0, a(1)=1, a(2)=1.
0, 1, 1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, 0, 160078872315904478576640000, 0, -1342964491649083924630732800000, 0, 15522270327163593186886877184000000, 0
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Crossrefs
Equals second left hand column of A161739 (RSEG2 triangle).
Programs
-
Magma
[n le 2 select Floor((n+1)/2) else Factorial(n)*Bernoulli(n-1): n in [0..40]]; // G. C. Greubel, Apr 26 2024
-
Maple
A129825 := proc(n) if n <= 1 then n; elif n = 2 then 1; else n!*bernoulli(n-1) ; fi; end: # R. J. Mathar, May 21 2009
-
Mathematica
a[n_] := n!*BernoulliB[n-1]; a[0]=0; a[2]=1; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 04 2013 *)
-
SageMath
[(n+1)//2 if n <3 else factorial(n)*bernoulli(n-1) for n in range(41)] # G. C. Greubel, Apr 26 2024
Formula
From Johannes W. Meijer, Jun 18 2009: (Start)
a(n) = Sum_{k=1..n} (-1)^(k+1)*(n!/k)*S2(n, k)*(k-1)!.
a(n) = A129814(n-1) for n > 2. - Georg Fischer, Oct 07 2018
Extensions
Edited by R. J. Mathar, May 21 2009
Comments