A129827 Numbers k such that Euler's totient phi(k) divided by 2 is a perfect square.
3, 4, 6, 15, 16, 19, 20, 24, 27, 30, 38, 51, 54, 64, 68, 73, 80, 91, 95, 96, 102, 111, 117, 120, 135, 146, 148, 152, 163, 182, 190, 216, 222, 228, 234, 243, 252, 255, 256, 270, 272, 275, 303, 320, 323, 326, 340, 365, 375, 384, 404, 408, 455, 459, 480, 486, 500
Offset: 1
Keywords
Examples
a(4) is 15 because phi(15) = 8, which is twice the square of 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[500], IntegerQ @ Sqrt[EulerPhi[#]/2] &] (* Amiram Eldar, Mar 07 2020 *)
-
PARI
isok(n) = issquare(eulerphi(n)/2) \\ Michel Marcus, Jul 23 2013
-
Python
from sympy import totient from sympy.ntheory.primetest import is_square for i in range(3, 501): if is_square(int(totient(i)/2)): print(i, end=", ") # Waldemar Puszkarz, Oct 15 2024
Comments