A129831 Alternating sum of double factorials: n!! - (n-1)!! + (n-2)!! - ... 1!!.
1, 1, 2, 6, 9, 39, 66, 318, 627, 3213, 7182, 38898, 96237, 548883, 1478142, 8843778, 25615647, 160178913, 494550162, 3221341038, 10527969537, 71221636863, 245012506362, 1716978047238, 6188875533387, 44822878860213, 168635167816662, 1259693955204138
Offset: 1
Keywords
Examples
a(5) = 5!! - 4!! + 3!! - 2!! + 1!! = 15 - 8 + 3 - 2 + 1 = 9.
Programs
-
Maple
A129831 := proc(n) add( (-1)^i*doublefactorial(n-i),i=0..n-1) ; end proc: # R. J. Mathar, Aug 22 2012 # second Maple program: a:= proc(n) option remember; `if`(n=0, 0, doublefactorial(n)-a(n-1)) end: seq(a(n), n=1..30); # Alois P. Heinz, Feb 02 2025
-
Mathematica
Table[Sum[(-1)^i*(n-i)!!,{i,0,n-1}],{n,26}] (* James C. McMahon, Feb 02 2025 *)
Formula
a(n) = n!! - (n-1)!! + (n-2)!! - ... 1!! = A006882(n) - a(n-1).