cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129841 Antidiagonal sums of triangle T defined in A048594: T(j,k) = k! * Stirling1(j,k), 1<= k <= j.

Original entry on oeis.org

1, -1, 4, -12, 52, -256, 1502, -10158, 78360, -680280, 6574872, -70075416, 816909816, -10342968456, 141357740736, -2074340369088, 32530886655168, -542971977209760, 9610316495698416, -179788450082431536, 3544714566466060032
Offset: 1

Views

Author

Paul Curtz, May 22 2007

Keywords

Examples

			First seven rows of T are
[    1 ]
[   -1,      2 ]
[    2,     -6,      6 ]
[   -6,     22,    -36,     24 ]
[   24,   -100,    210,   -240,    120 ]
[ -120,    548,  -1350,   2040,  -1800,    720 ]
[  720,  -3528,   9744, -17640,  21000, -15120,   5040 ]
		

References

  • P. Curtz, Integration numerique des systemes differentiels a conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, 1969, 135 pages, p. 61. Available from Centre d'Electronique de L'Armement, 35170 Bruz, France, or INRIA, Projets Algorithmes, 78150 Rocquencourt.
  • P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p. 44.
  • P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp. 67-78.

Crossrefs

Cf. A048594 (T read by rows), A075181 (T unsigned with rows read backwards), A006252 (row sums of T), A000142 (main diagonal of T), A001286 (unsigned first subdiagonal of T). Unsigned values of second through sixth column of T are in A052517, A052748, A052753, A052767, A052779 resp.

Programs

  • Magma
    m:=21; T:=[ [ Factorial(k)*StirlingFirst(j, k): k in [1..j] ]: j in [1..m] ]; [ &+[ T[j-k+1][k]: k in [1..(j+1) div 2] ]: j in [1..m] ]; // Klaus Brockhaus, Jun 03 2007
  • Mathematica
    m = 21; t[j_, k_] := k!*StirlingS1[j, k]; Total /@ Table[ t[j-k+1, k], {j, 1, m}, {k, 1, Quotient[j+1, 2]}] (* Jean-François Alcover, Aug 13 2012, translated from Klaus Brockhaus's Magma program *)

Formula

E.g.f. for k-th column (k>=1): log(1+x)^k. For further formulas see the references.

Extensions

Edited and extended by Klaus Brockhaus, Jun 03 2007