A129841 Antidiagonal sums of triangle T defined in A048594: T(j,k) = k! * Stirling1(j,k), 1<= k <= j.
1, -1, 4, -12, 52, -256, 1502, -10158, 78360, -680280, 6574872, -70075416, 816909816, -10342968456, 141357740736, -2074340369088, 32530886655168, -542971977209760, 9610316495698416, -179788450082431536, 3544714566466060032
Offset: 1
Keywords
Examples
First seven rows of T are [ 1 ] [ -1, 2 ] [ 2, -6, 6 ] [ -6, 22, -36, 24 ] [ 24, -100, 210, -240, 120 ] [ -120, 548, -1350, 2040, -1800, 720 ] [ 720, -3528, 9744, -17640, 21000, -15120, 5040 ]
References
- P. Curtz, Integration numerique des systemes differentiels a conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, 1969, 135 pages, p. 61. Available from Centre d'Electronique de L'Armement, 35170 Bruz, France, or INRIA, Projets Algorithmes, 78150 Rocquencourt.
- P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p. 44.
- P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp. 67-78.
Crossrefs
Programs
-
Magma
m:=21; T:=[ [ Factorial(k)*StirlingFirst(j, k): k in [1..j] ]: j in [1..m] ]; [ &+[ T[j-k+1][k]: k in [1..(j+1) div 2] ]: j in [1..m] ]; // Klaus Brockhaus, Jun 03 2007
-
Mathematica
m = 21; t[j_, k_] := k!*StirlingS1[j, k]; Total /@ Table[ t[j-k+1, k], {j, 1, m}, {k, 1, Quotient[j+1, 2]}] (* Jean-François Alcover, Aug 13 2012, translated from Klaus Brockhaus's Magma program *)
Formula
E.g.f. for k-th column (k>=1): log(1+x)^k. For further formulas see the references.
Extensions
Edited and extended by Klaus Brockhaus, Jun 03 2007