A129853 Nonascending wiggly sums: number of sums adding to n in which terms alternately do not increase and do not decrease.
1, 1, 2, 3, 6, 9, 17, 28, 50, 85, 149, 257, 448, 775, 1347, 2336, 4057, 7038, 12219, 21204, 36807, 63880, 110878, 192442, 334020, 579739, 1006237, 1746482, 3031310, 5261324, 9131892, 15849876, 27510049, 47748159, 82874713, 143842547, 249662173, 433329337, 752113633, 1305415658, 2265761441
Offset: 0
Keywords
Examples
The a(4)=6 sums that add to 4 are 4, 3+1, 2+2, 2+1+1, 1+1+2 and 1+1+1+1. The 2 = 2^(n-1)-a(n) sums 1+2+1 and 1+3 do not satisfy the criterion and do not count. From _Joerg Arndt_, May 21 2013: (Start) The a(6)=17 such compositions are 01: [ 1 1 1 1 1 1 ] 02: [ 1 1 1 1 2 ] 03: [ 1 1 2 1 1 ] 04: [ 1 1 2 2 ] 05: [ 1 1 3 1 ] 06: [ 1 1 4 ] 07: [ 2 1 1 1 1 ] 08: [ 2 1 2 1 ] 09: [ 2 1 3 ] 10: [ 2 2 2 ] 11: [ 3 1 1 1 ] 12: [ 3 1 2 ] 13: [ 3 3 ] 14: [ 4 1 1 ] 15: [ 4 2 ] 16: [ 5 1 ] 17: [ 6 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
A129853rec := proc(part,n) local asum,a,k ; asum := add(i,i=part) ; if asum > n then RETURN(0) ; elif asum = n then RETURN(1) ; else a := 0 ; if nops(part) mod 2 = 0 then for k from op(-1,part) to n-asum do a := a+A129853rec([op(part),k],n) ; od: else for k from 1 to min(op(-1,part),n-asum) do a := a+A129853rec([op(part),k],n) ; od: fi ; RETURN(a) ; fi ; end: A129853 := proc(n) local a,a1 ; a := 0 ; for a1 from 1 to n do a := a+A129853rec([a1],n) ; od: RETURN(a) ; end: seq(A129853(n),n=1..20) ; # R. J. Mathar, Oct 31 2007 # second Maple program: b:= proc(n, l, t) option remember; `if`(n=0, 1, add( b(n-j, j, not t), j=`if`(t, l..n, 1..min(n, l)))) end: a:= n-> b(n, 1, true): seq(a(n), n=0..40); # Alois P. Heinz, May 23 2023
-
Mathematica
b[n_, l_, t_] := b[n, l, t] = If[n == 0, 1, Sum[b[n - j, j, !t], {j, If[t, Range[l, n], Range[Min[n, l]]]}]]; a[n_] := b[n, 1, True]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 16 2023, after Alois P. Heinz *)
Extensions
More terms from R. J. Mathar, Oct 31 2007
More terms from Joerg Arndt, May 21 2013
a(0)=1 prepended by Alois P. Heinz, May 23 2023