A129895 a(1)=1. a(n) = a(n-1) + number of triangular numbers among the first (n-1) terms of the sequence.
1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 21, 25, 29, 33, 37, 41, 45, 50, 55, 61, 67, 73, 79, 85, 91, 98, 105, 113, 121, 129, 137, 145, 153, 162, 171, 181, 191, 201, 211, 221, 231, 242, 253, 265, 277, 289, 301, 313, 325, 338, 351, 365, 379, 393, 407, 421, 435, 450, 465, 481
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 0, 2, 0, -2, 1).
Crossrefs
Cf. A097602.
Programs
-
Maple
T := {seq((1/2)*j*(j+1), j = 1 .. 40)}: a[1] := 1; for n from 2 to 60 do a[n] := a[n-1]+nops(`intersect`(T, {seq(a[i], i = 1 .. n-1)})) end do: seq(a[n], n = 1 .. 60); # Emeric Deutsch, Jun 21 2007
-
Mathematica
nxt[{a_,t_}]:=Module[{x=t},{a+t,If[IntegerQ[(Sqrt[8(a+t)+1]-1)/2], x+1, x]}]; Transpose[NestList[nxt,{1,1},70]][[1]] (* or *) LinearRecurrence[ {2,0,-2,0,2,0,-2,1},{1,2,3,5,7,9,11,13},70] (* Harvey P. Dale, May 16 2014 *)
Formula
For k=1,3: a(8*n+k) = (4*n+k)*(2*n+1). - Reinhard Zumkeller, Dec 20 2007
G.f.: -x*(x^7 - x^6 - x^5 + x^4 + x^3 - x^2 + 1) / ((x-1)^3*(x+1)*(x^4+1)). - Colin Barker, Mar 29 2013
a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-5) - 2*a(n-7) + a(n-8); a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=7, a(6)=9, a(7)=11, a(8)=13. - Harvey P. Dale, May 16 2014
Extensions
More terms from Emeric Deutsch, Jun 21 2007