cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129895 a(1)=1. a(n) = a(n-1) + number of triangular numbers among the first (n-1) terms of the sequence.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 21, 25, 29, 33, 37, 41, 45, 50, 55, 61, 67, 73, 79, 85, 91, 98, 105, 113, 121, 129, 137, 145, 153, 162, 171, 181, 191, 201, 211, 221, 231, 242, 253, 265, 277, 289, 301, 313, 325, 338, 351, 365, 379, 393, 407, 421, 435, 450, 465, 481
Offset: 1

Views

Author

Leroy Quet, Jun 04 2007

Keywords

Crossrefs

Cf. A097602.

Programs

  • Maple
    T := {seq((1/2)*j*(j+1), j = 1 .. 40)}: a[1] := 1; for n from 2 to 60 do a[n] := a[n-1]+nops(`intersect`(T, {seq(a[i], i = 1 .. n-1)})) end do: seq(a[n], n = 1 .. 60); # Emeric Deutsch, Jun 21 2007
  • Mathematica
    nxt[{a_,t_}]:=Module[{x=t},{a+t,If[IntegerQ[(Sqrt[8(a+t)+1]-1)/2], x+1, x]}]; Transpose[NestList[nxt,{1,1},70]][[1]] (* or *) LinearRecurrence[ {2,0,-2,0,2,0,-2,1},{1,2,3,5,7,9,11,13},70] (* Harvey P. Dale, May 16 2014 *)

Formula

For k=1,3: a(8*n+k) = (4*n+k)*(2*n+1). - Reinhard Zumkeller, Dec 20 2007
G.f.: -x*(x^7 - x^6 - x^5 + x^4 + x^3 - x^2 + 1) / ((x-1)^3*(x+1)*(x^4+1)). - Colin Barker, Mar 29 2013
a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-5) - 2*a(n-7) + a(n-8); a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=7, a(6)=9, a(7)=11, a(8)=13. - Harvey P. Dale, May 16 2014

Extensions

More terms from Emeric Deutsch, Jun 21 2007