cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138003 Binomial transform of 1, 1, 0, -1, -1 (periodically continued).

Original entry on oeis.org

1, 2, 3, 3, 0, -8, -21, -34, -34, 0, 89, 233, 377, 377, 0, -987, -2584, -4181, -4181, 0, 10946, 28657, 46368, 46368, 0, -121393, -317811, -514229, -514229, 0, 1346269, 3524578, 5702887, 5702887, 0, -14930352, -39088169, -63245986, -63245986
Offset: 0

Views

Author

Paul Curtz, May 01 2008

Keywords

Comments

Shares many elements with A103311, as already indicated by the similarity of the two generating functions. First differences are essentially in A105371. - R. J. Mathar, May 02 2008
The longer of the two recurrences ensures that the sequence (like A133476) equals its 5th differences. - R. J. Mathar, May 02 2008

Crossrefs

Cf. A129929.

Programs

  • Mathematica
    LinearRecurrence[{3,-4,2,-1},{1,2,3,3},50] (* Paolo Xausa, Dec 05 2023 *)
  • PARI
    a=[1,2,3,3];for(i=1,99,a=concat(a,3*a[#a]-4*a[#a-1]+2*a[#a-2]-a[#a-3]));a \\ Charles R Greathouse IV, Jun 02 2011

Formula

From R. J. Mathar, May 02 2008: (Start)
O.g.f.: (x^2-x+1)/(x^4-2*x^3+4*x^2-3*x+1).
a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+2a(n-5).
a(n) = 3a(n-1)-4a(n-2)+2a(n-3)-a(n-4). (End)

Extensions

Edited by R. J. Mathar, May 02 2008

A361376 Rewrite A129912(n), a product of distinct primorials P(i) = A002110(i) instead as a sum of powers 2^(i-1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 16, 11, 17, 12, 13, 18, 19, 32, 14, 33, 20, 15, 21, 34, 35, 22, 24, 64, 23, 36, 25, 65, 37, 26, 66, 38, 27, 67, 40, 128, 39, 41, 28, 68, 129, 29, 69, 42, 130, 48, 43, 30, 70, 72, 131, 49, 31, 71, 44, 73, 256, 132, 45, 50, 257, 133, 74, 51, 46, 80, 75, 258, 134, 136
Offset: 1

Views

Author

Michael De Vlieger, Jun 08 2023

Keywords

Comments

Permutation of nonnegative numbers.

Examples

			a(1) = 0 by convention.
a(8) = 8 comes before a(9) = 7, since we interpret 8 = 2^3 instead as P(4) = 210, while for a(9), 7 = 2^2 + 2^1 + 2^0 becomes P(3)*P(2)*P(1) = 30*6*2 = 360. Because 210 < 360, 8 appears before 7 in this sequence.
Table relating a(n), n=1..19 with the set S(n) of indices of distinct primorial factors of A129912(n):
   n A129912(n)  S(n)   a(n)  A272011(a(n))
  -----------------------------------------
   1         1            0
   2         2   1        1   0
   3         6   2        2   1
   4        12   2,1      3   1,0
   5        30   3        4   2
   6        60   3,1      5   2,0
   7       180   3,2      6   2,1
   8       210   4        8   3
   9       360   3,2,1    7   2,1,0
  10       420   4,1      9   3,0
  11      1260   4,2     10   3,1
  12      2310   5       16   4
  13      2520   4,2,1   11   3,1,0
  14      4620   5,1     17   4,0
  15      6300   4,3     12   3,2
  16     12600   4,3,1   13   3,2,0
  17     13860   5,2     18   4,1
  18     27720   5,2,1   19   4,1,0
  19     30030   6       32   5
  ...
		

Crossrefs

Programs

  • Mathematica
    a6939[n_] := Product[Prime[n + 1 - i]^i, {i, n}];
    g[m_] := Block[{f, j = 1},
      f[n_, i_, e_] :=
       If[n < m, Block[{p = Prime[i + 1]}, If[e == 1, Sow@ n];
         f[n p^e, i + 1, e];
         If[e > 1, f[n p^(e - 1), i + 1, e - 1]]]];
      Sort@ Reap[While[a6939[j] < m, f[2^j, 1, j]; j++]][[-1, 1]] ];
    Map[Total@
         Map[2^(# - 1) &,
          Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} ] &[
    FactorInteger[#][[All, -1]]] &, g[2^31]] (* Michael De Vlieger, Jun 08 2023, after Giovanni Resta at A129929 *)

Formula

Let S(n) be the set of indices of primorials P(i), reverse sorted, such that A129912(n) = Product_{k=1..m} S(n,k), where m = | S(n) |. Then a(n) = Sum_{k=1..m} 2^(S(n,k)-1).
Showing 1-2 of 2 results.