cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129961 Main diagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1)+T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 42, 64, 94, 140, 232, 464, 1092, 2744, 6840, 16384, 37384, 81296, 169120, 338240, 654192, 1232288, 2280864, 4194304, 7761376, 14635712, 28384384, 56768768, 116566080, 243472256, 511907712, 1073741824, 2232713344
Offset: 1

Views

Author

Paul Curtz, Jun 10 2007

Keywords

Comments

First column is periodically 1 1 1 1 0 0 0 0 (see A131078).
First subdiagonal is 1, 2, 4, 7, 11, 16, 22, ... (see A131075); next subdiagonals are 1, 2, 3, 4, 5, 6, 8, 16, 46, 140, ..., 1, 1, 1, 1, 1, 2, 8, 30, 94, 256, ..., 0, 0, 0, 0, 1, 6, 22, 64, 162, 372, ..., 0, 0, 0, 1, 5, 16, 42, 98, 210, 420, ...., 0, 0, 1, 4, 11, 26, 56, 112, 210, 372, ..., 0, 1, 3, 7, 15, 30, 56, 98, 162, 256, ...,1, 2, 4, 8, 15, 26, 42, 64, 94, 140, ... . Main diagonal and eighth subdiagonal agree; generally j-th subdiagonal equals (j+8)-th subdiagonal.
Antidiagonal sums are 1, 1, 3, 3, 6, 5, 11, ... (see A131077).

Examples

			First seven rows of T are
[ 1 ]
[ 1, 2 ]
[ 1, 2, 4 ]
[ 1, 2, 4, 8 ]
[ 0, 1, 3, 7, 15 ]
[ 0, 0, 1, 4, 11, 26 ]
[ 0, 0, 0, 1, 5, 16, 42 ].
		

Crossrefs

Cf. A129339, A131074 (T read by rows), A131075 (first subdiagonal of T), A131076 (row sums of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.

Programs

  • Magma
    m:=33; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n, n]: n in [1..m] ]; // Klaus Brockhaus, Jun 14 2007
    
  • Magma
    m:=33; S:=[ [1, 1, 1, 1, 0, 0, 0, 0][(n-1) mod 8 + 1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Jun 17 2007
  • PARI
    {m=33; v=concat([1, 2, 4, 8, 15], vector(m-5)); for(n=6, m, v[n]=6*v[n-1]-14*v[n-2]+16*v[n-3]-10*v[n-4]+4*v[n-5]); v} \\ Klaus Brockhaus, Jun 14 2007
    

Formula

G.f.: x*(1-x)^4/((1-2*x)*(1-4*x+6*x^2-4*x^3+2*x^4)).
a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 8, a(5) = 15; for n > 5, a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-10*a(n-4)+4*a(n-5).
Binomial transform of A131078. - Klaus Brockhaus, Jun 17 2007

Extensions

Edited and extended by Klaus Brockhaus, Jun 14 2007
G.f. corrected by Klaus Brockhaus, Oct 15 2009