A129961 Main diagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1)+T(j,k-1) for 2 <= k <= j.
1, 2, 4, 8, 15, 26, 42, 64, 94, 140, 232, 464, 1092, 2744, 6840, 16384, 37384, 81296, 169120, 338240, 654192, 1232288, 2280864, 4194304, 7761376, 14635712, 28384384, 56768768, 116566080, 243472256, 511907712, 1073741824, 2232713344
Offset: 1
Keywords
Examples
First seven rows of T are [ 1 ] [ 1, 2 ] [ 1, 2, 4 ] [ 1, 2, 4, 8 ] [ 0, 1, 3, 7, 15 ] [ 0, 0, 1, 4, 11, 26 ] [ 0, 0, 0, 1, 5, 16, 42 ].
Crossrefs
Programs
-
Magma
m:=33; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n, n]: n in [1..m] ]; // Klaus Brockhaus, Jun 14 2007
-
Magma
m:=33; S:=[ [1, 1, 1, 1, 0, 0, 0, 0][(n-1) mod 8 + 1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Jun 17 2007
-
PARI
{m=33; v=concat([1, 2, 4, 8, 15], vector(m-5)); for(n=6, m, v[n]=6*v[n-1]-14*v[n-2]+16*v[n-3]-10*v[n-4]+4*v[n-5]); v} \\ Klaus Brockhaus, Jun 14 2007
Formula
G.f.: x*(1-x)^4/((1-2*x)*(1-4*x+6*x^2-4*x^3+2*x^4)).
a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 8, a(5) = 15; for n > 5, a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-10*a(n-4)+4*a(n-5).
Binomial transform of A131078. - Klaus Brockhaus, Jun 17 2007
Extensions
Edited and extended by Klaus Brockhaus, Jun 14 2007
G.f. corrected by Klaus Brockhaus, Oct 15 2009
Comments