cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129982 Fibonacci numbers sandwiched between 1's.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 1, 5, 1, 8, 1, 13, 1, 21, 1, 34, 1, 55, 1, 89, 1, 144, 1, 233, 1, 377, 1, 610, 1, 987, 1, 1597, 1, 2584, 1, 4181, 1, 6765, 1, 10946, 1, 17711, 1, 28657, 1, 46368, 1, 75025, 1, 121393, 1, 196418, 1, 317811, 1, 514229, 1, 832040, 1, 1346269, 1
Offset: 0

Views

Author

Paul Curtz, Jun 14 2007

Keywords

Comments

This sequence is similar to Somos-5 (A006721). - Michael Somos, Aug 15 2014

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + x^10 + ...
		

Crossrefs

Programs

  • Maple
    G := 1/(1-x^2)+x^3/(1-x^2-x^4); Gser := series(G, x = 0, 70); seq(coeff(Gser, x, n), n = 0 .. 65); # Emeric Deutsch, Jul 09 2007
  • Mathematica
    a[ n_] := If[ OddQ[n], Fibonacci[ Quotient[ n, 2]], 1]; (* Michael Somos, Aug 15 2014 *)
  • PARI
    {a(n) = if( n%2, fibonacci( n\2), 1)}; /* Michael Somos, Aug 15 2014 */

Formula

G.f.: (1 - x^2 + x^3 - x^4 - x^5) / (1 - 2*x^2 + x^6). - Michael Somos, Aug 15 2014
a(2-n) = (-1)^(mod(n, 4) == 1) * a(n) for all n in Z. - Michael Somos, Aug 15 2014
a(2*n) = 1, a(2*n + 1) = A000045(n) for all n in Z. - Michael Somos, Aug 15 2014
a(n) = 2*a(n-2) - a(n-6) for all n in Z. - Michael Somos, Aug 15 2014
0 = a(n)*a(n+5) - a(n+1)*a(n+4) - a(n+2)*a(n+3) for all even n in Z. - Michael Somos, Aug 15 2014
0 = a(n)*a(n+5) - a(n+1)*a(n+4) + a(n+2)*a(n+3) for all odd n in Z. - Michael Somos, Aug 15 2014

Extensions

More terms from Emeric Deutsch, Jul 09 2007