cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129985 Multiplicative persistence of the prime numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 1, 2, 1, 2, 3, 2, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 2, 2, 2, 3, 1, 1, 3, 3, 2, 1, 2, 3, 3, 2, 3, 1, 2, 2, 3, 2, 2, 4, 2, 3, 3, 1, 1, 1, 2, 1, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 4, 1, 1, 3, 1, 2, 3, 2, 3, 3, 2, 2, 3, 4, 3, 3, 3, 3, 1, 1, 2, 2, 2
Offset: 1

Views

Author

Keywords

Examples

			229 = prime(50) -> 2*2*9 = 36 -> 3*6 = 18 -> 1*8 = 8 -> persistence(229) = 3 = a(50).
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,k,w,ok,cont,x; for i from 1 by 1 to n do k:=ithprime(i); w:=1; ok:=1; x:=k; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
  • Mathematica
    s={};Do[i=0;m=Prime[n];While[m!=Times@@IntegerDigits[m],m=Times@@IntegerDigits[m];i++];AppendTo[s,i],{n,100}];s (* James C. McMahon, Feb 03 2025 *)

Formula

a(n) = A031346(A000040(n)). - Alois P. Heinz, Feb 03 2025

Extensions

Offset corrected by Alois P. Heinz, Feb 03 2025