A129985 Multiplicative persistence of the prime numbers.
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 1, 2, 1, 2, 3, 2, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 2, 2, 2, 3, 1, 1, 3, 3, 2, 1, 2, 3, 3, 2, 3, 1, 2, 2, 3, 2, 2, 4, 2, 3, 3, 1, 1, 1, 2, 1, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 4, 1, 1, 3, 1, 2, 3, 2, 3, 3, 2, 2, 3, 4, 3, 3, 3, 3, 1, 1, 2, 2, 2
Offset: 1
Examples
229 = prime(50) -> 2*2*9 = 36 -> 3*6 = 18 -> 1*8 = 8 -> persistence(229) = 3 = a(50).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(n) local i,k,w,ok,cont,x; for i from 1 by 1 to n do k:=ithprime(i); w:=1; ok:=1; x:=k; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
-
Mathematica
s={};Do[i=0;m=Prime[n];While[m!=Times@@IntegerDigits[m],m=Times@@IntegerDigits[m];i++];AppendTo[s,i],{n,100}];s (* James C. McMahon, Feb 03 2025 *)
Formula
Extensions
Offset corrected by Alois P. Heinz, Feb 03 2025