cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130032 Row sums of unsigned triangle A129467.

Original entry on oeis.org

1, 1, 3, 21, 273, 5733, 177723, 7642089, 435599073, 31798732329, 2893684641939, 321198995255229, 42719466368945457, 6706956219924436749, 1227372988246171925067, 258975700519942276189137, 62413143825306088561582017, 17038788264308562177311890641
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Crossrefs

Cf. A130031 (signed row sums), A130559 (unsigned row sums).

Programs

  • Magma
    [1] cat [n le 1 select 1 else (n^2-n+1)*Self(n-1): n in [1..30]]; // G. C. Greubel, Feb 10 2024
    
  • Mathematica
    Round@Table[Cosh[Sqrt[3] Pi/2] Gamma[n + 1/2 + I Sqrt[3]/2] Gamma[n + 1/2 - I Sqrt[3]/2]/Pi, {n, 0, 20}] (* Vladimir Reshetnikov, Aug 23 2016 *)
    Product[k^2-k+1, {k,0,Range[0,30]}] (* G. C. Greubel, Feb 10 2024 *)
  • PARI
    a(n)=prod(k=1,n,k^2-k+1) \\ Charles R Greathouse IV, Mar 04 2012
    
  • SageMath
    def A130032(n): return 1 if n<2 else (n^2-n+1)*A130032(n-1)
    [A130032(n) for n in range(31)] # G. C. Greubel, Feb 10 2024

Formula

a(n) = Sum_{m=0..n} |A129467(n,m)| for n >= 0.
a(n) = Sum_{j=0..n-1} |A130559(n-1, j)|, n >= 1.
For n > 0, a(n) = n! * Product_{k=1..n} [Gamma(k + 1/k)/Gamma(k - 1 + 1/k)]. - Gerald McGarvey, Nov 05 2007
a(n) = Product_{k=0..n} (k^2 - k + 1). - Gary Detlefs, Mar 04 2012
a(n) ~ c*n!*(n-1)! for c = Product_{k>=1} (1+1/(k^2+k)) = 2.428189792... [Charles R Greathouse IV, Mar 04 2012], c = cosh(sqrt(3)*Pi/2)/Pi. - Vaclav Kotesovec, Aug 24 2016
G.f.: 1 + x + 3*x^2/(Q(0)-3*x), where Q(k) = 1 + x*(k^2+3*k+3) - x*(k^2+5*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 15 2013

Extensions

Definition corrected by Wolfdieter Lang, Jun 04 2010