cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A133179 A modular binomial sum transform of 2^n .

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 5, 15, 1, 3, 5, 15, 17, 51, 85, 255, 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535
Offset: 0

Views

Author

Philippe Deléham, Oct 10 2007

Keywords

Examples

			A034868 is:
1;
1;
1, 2;
1, 3;
1, 4, 6;
1, 5, 10 ;...
A034868 modulo 2:
1;
1;
1, 0;
1, 1;
1, 0, 0;
1, 1, 0 ;...
a(0)=1*2^0 = 1;
a(1)=1*2^0 = 1;
a(2)=1*2^0+0*2^1 = 1;
a(3)=1*2^0+1*2^1 = 3;
a(4)=1*2^0+0*2^1+0*2^2 = 1
a(5)=1*2^0+1*2^1+0*2^2 = 3
		

Crossrefs

Programs

  • Mathematica
    A133179[n_] := Sum[2^k*Mod[Binomial[n, k], 2], {k, 0, Floor[n/2]}]; Table[A133179[n], {n,0,50}] (* G. C. Greubel, Aug 11 2017 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} mod(binomial(n,k),2) * 2^k.
Showing 1-1 of 1 results.