cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130063 Primes p such that p divides 3^((p+1)/2) - 2^((p+1)/2) - 1.

Original entry on oeis.org

23, 47, 71, 73, 97, 167, 191, 193, 239, 241, 263, 311, 313, 337, 359, 383, 409, 431, 433, 457, 479, 503, 577, 599, 601, 647, 673, 719, 743, 769, 839, 863, 887, 911, 937, 983, 1009, 1031, 1033, 1103, 1129, 1151, 1153, 1201, 1223, 1249, 1297, 1319, 1321, 1367
Offset: 1

Views

Author

Alexander Adamchuk, May 05 2007

Keywords

Comments

Primes = 1 or 23 mod 24. Hence, together with 2, primes such that (2/p) = 1 = (3/p) where (k/p) is the Legendre symbol. - Charles R Greathouse IV, Apr 06 2012

Crossrefs

Cf. A097934 = Primes p such that p divides 3^((p-1)/2) - 2^((p-1)/2).
Subsequence of A038876.

Programs

  • Mathematica
    Select[ Range[2000], PrimeQ[ # ]&&Mod[ PowerMod[3,(#+1)/2,# ] - PowerMod[2,(#+1)/2,# ] - 1, # ]==0&]
    Select[Prime[Range[250]],Divisible[3^((#+1)/2)-2^((#+1)/2)-1,#]&] (* Harvey P. Dale, Mar 21 2021 *)
  • PARI
    is(n)=(n+1)%24<3 && isprime(n) \\ Charles R Greathouse IV, Apr 06 2012