cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130064 a(n) = (n / SmallestPrimeFactor(n)) * GreatestPrimeFactor(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 8, 9, 25, 11, 18, 13, 49, 25, 16, 17, 27, 19, 50, 49, 121, 23, 36, 25, 169, 27, 98, 29, 75, 31, 32, 121, 289, 49, 54, 37, 361, 169, 100, 41, 147, 43, 242, 75, 529, 47, 72, 49, 125, 289, 338, 53, 81, 121, 196, 361, 841, 59, 150, 61, 961, 147, 64, 169, 363
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := With[{pp = FactorInteger[n][[All, 1]]}, n*pp[[-1]]/pp[[1]]];
    Array[a, 100] (* Jean-François Alcover, Nov 18 2021 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)[, 1]~); n*vecmax(f)/vecmin(f)); \\ Michel Marcus, Sep 24 2022
    
  • Python
    from sympy import factorint
    def a(n): f = factorint(n); return 1 if n == 1 else n//min(f)*max(f)
    print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Sep 24 2022

Formula

a(n) = n*A006530(n)/A020639(n) = A032742(n)*A006530(n);
a(n) >= n.
a(n) = n iff n is a prime power: a(A000961(n)) = A000961(n);
a(A001221(n)) <= A001221(n); a(A001222(n)) = A001222(n);
a(n) = A130065(n)+n*A046665(n)*A074320(n)/A066048(n) = A000290(n)/A130065(n).
Sum_{k=1..n} k/a(k) ~ n/log(n) + 3*n/log(n)^2 + o(n/log(n)^2) (Erdős and van Lint, 1982). - Amiram Eldar, Oct 14 2022