cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130123 Infinite lower triangular matrix with 2^k in the right diagonal and the rest zeros. Triangle, T(n,k), n zeros followed by the term 2^k. Triangle by columns, (2^k, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2048, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4096
Offset: 0

Views

Author

Gary W. Adamson, May 11 2007

Keywords

Comments

A 2^n transform matrix.
Triangle T(n,k), 0 <= k <= n, given by [0,0,0,0,0,0,...] DELTA [2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 26 2007
Also the Bell transform of A000038. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
T is the convolution triangle of the characteristic function of 2 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			First few terms of the triangle:
  1;
  0, 2;
  0, 0, 4;
  0, 0, 0, 8;
  0, 0, 0, 0, 16;
  0, 0, 0, 0,  0, 32; ...
		

Crossrefs

Programs

  • Magma
    [[k eq n select 2^n else 0: k in [0..n]]: n in [0..14]]; // G. C. Greubel, Jun 05 2019
    
  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n=0,2,0), 9); # Peter Luschny, Jan 27 2016
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> ifelse(n=1, 2, 0)); # Peter Luschny, Oct 19 2022
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 2, 0]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    Table[If[k==n, 2^n, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 05 2019 *)
  • PARI
    {T(n,k) = if(k==n, 2^n, 0)}; \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 2^n
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jun 05 2019

Formula

G.f.: 1/(1-2*x*y). - R. J. Mathar, Aug 11 2015