cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130126 Number of partitions of n in which each even part has odd multiplicity.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 10, 13, 17, 24, 33, 43, 58, 75, 98, 127, 161, 205, 262, 328, 414, 517, 641, 794, 982, 1205, 1475, 1803, 2197, 2664, 3230, 3896, 4693, 5640, 6754, 8077, 9647, 11479, 13637, 16178, 19152, 22624, 26695, 31426, 36948, 43372, 50819, 59463, 69490
Offset: 0

Views

Author

Vladeta Jovovic, Aug 01 2007

Keywords

Examples

			a(5) = 6 because we have 5, 41, 32, 311, 2111 and 11111 (221 does not qualify).
		

Crossrefs

Cf. A131942.

Programs

  • Maple
    g:=product((1+q^(2*n)-q^(4*n))/((1-q^(2*n-1))*(1-q^(4*n))),n=1..50): gser:= series(g,q=0,45): seq(coeff(gser,q,n),n=0..42); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          add(`if`(irem(i, 2)=0 and irem(j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 0, 0, b[n - i*j, i - 1]], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k) - x^(4*k))/((1-x^(2*k-1)) * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)

Formula

G.f.: Product_{n>=1} (1+q^(2n)-q^(4n))/((1-q^(2n-1))(1-q^(4n))).
a(n) ~ sqrt(Pi^2/2 + 4*log(phi)^2) * exp(sqrt((Pi^2 + 8*log(phi)^2)*(n/2))) / (4*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

Extensions

More terms from Emeric Deutsch, Aug 24 2007