cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130131 Number of n-lobsters.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 23, 47, 105, 231, 532, 1224, 2872, 6739, 15955, 37776, 89779, 213381, 507949, 1209184, 2880382, 6861351, 16348887, 38955354, 92831577, 221219963, 527197861, 1256385522, 2994200524, 7135736613, 17005929485, 40528629737, 96588403995, 230190847410
Offset: 1

Views

Author

Eric W. Weisstein, May 11 2007

Keywords

Comments

A lobster graph is a tree having the property that the removal of all leaf nodes leaves a caterpillar graph (see A005418). - N. J. A. Sloane, Nov 05 2020

Examples

			a(10) = 105 = A000055(10) - 1 because all trees with 10 vertices are lobsters except this one:
    o-o-o
   /
  o-o-o-o
   \
    o-o-o
Also, all trees with 10 vertices are linear (all vertices of degree >2 belong to a single path) except this one:
     o   o
      \ /
       o
       |
       o
     /   \
    o     o
   / \   / \
  o   o o   o
		

Crossrefs

Row sums of A380363.
Cf. k-linear trees for k = 1..4: A004250, A338706, A338707, A338708.

Programs

  • Mathematica
    eta = QPochhammer;
    s[n_] := With[{ox = O[x]^n}, x^2 ((1/eta[x + ox] - 1/(1 - x))^2/(1 - x/eta[x + ox]) + (1/eta[x^2 + ox] - 1/(1 - x^2))(1 + x/eta[x + ox])/(1 - x^2/eta[x^2 + ox]))/2 + x/eta[x + ox] - x^3/((1 - x)^2*(1 + x))];
    CoefficientList[s[32], x] // Rest (* Jean-François Alcover, Nov 17 2020, after Andrew Howroyd *)
  • PARI
    s(n)={my(ox=O(x^n)); x^2*((1/eta(x+ox)-1/(1-x))^2/(1-x/eta(x+ox)) + (1/eta(x^2+ox)-1/(1-x^2))*(1+x/eta(x+ox))/(1-x^2/eta(x^2+ox)))/2 + x/eta(x+ox) - x^3/((1-x)^2*(1+x))}
    Vec(s(30)) \\ Andrew Howroyd, Nov 02 2017

Extensions

a(15)-a(32) from Washington Bomfim, Feb 23 2011