A130140 Let f denote the map that replaces k with the concatenation of its nontrivial divisors, written in increasing order, each divisor being written in base 10 with its digits in reverse order. Then a(n) = prime reached when starting at 2n+1 and iterating f.
1, 3, 5, 7, 3, 11, 13
Offset: 0
Examples
n = 7: 2n+1 = 15 = 3*5 -> 35 = 5*7 -> 57 = 3*19 -> 391 = 17*23 -> 7132. Then 7132 has nontrivial divisors 2, 4, 1783, 3566, so we get 2438716653. Then 2438716653 has nontrivial divisors 3, 9, 27, 81, 243, 1453, 4359, 6907, 13077, 20721, 39231, 62163, 117693, 186489, 353079, 559467, 1678401, 10035871, 30107613, 90322839, 270968517, 812905551, so we get 397218342354195347096770311270213293361263967119846819703537649551048761178530013167010393822309715869072155509218 = 2*3^4*1217*317539*1211548321*33378971294653*8960783431807*17509226460292689821646170308388500174366980857582533580184934929433.
Extensions
Edited by Michel Marcus, Mar 09 2023
Comments