A130191 Square of the Stirling2 matrix A048993.
1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 15, 32, 12, 1, 0, 52, 175, 110, 20, 1, 0, 203, 1012, 945, 280, 30, 1, 0, 877, 6230, 8092, 3465, 595, 42, 1, 0, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 0, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1
Offset: 0
Examples
Triangle starts: 1; 0, 1; 0, 2, 1; 0, 5, 6, 1; 0, 15, 32, 12, 1; 0, 52, 175, 110, 20, 1; 0, 203, 1012, 945, 280, 30, 1; 0, 877, 6230, 8092, 3465, 595, 42, 1;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Wolfdieter Lang, First 10 rows and more
- John Riordan, Letter, Apr 28 1976. (See third page)
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> combinat:-bell(n+1), 9); # Peter Luschny, Jan 27 2016
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 10; M = BellMatrix[BellB[# + 1]&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *) a[n_, m_]:= Sum[StirlingS2[n, k]*StirlingS2[k, m], {k,m,n}]; Table[a[n, m], {n, 0, 100}, {m, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2018 *)
-
PARI
for(n=0, 9, for(k=0, n, print1(sum(j=k, n, stirling(n, j, 2)*stirling(j, k, 2)), ", "))) \\ G. C. Greubel, Jul 10 2018
-
Sage
# uses[riordan_array from A256893] riordan_array(1, exp(exp(x) - 1), 8, exp=true) # Peter Luschny, Apr 19 2015
Formula
a(n,k) = Sum_{j=k..n} S2(n,j) * S2(j,k), n>=k>=0.
E.g.f. row polynomials with argument x: exp(x*f(f(z))).
E.g.f. column k: ((exp(exp(x) - 1) - 1)^k)/k!.
Comments