A130207 Diagonalized matrix of A000010, Euler totient function phi.
1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1
Examples
First few rows of the triangle are: 1; 0, 1; 0, 0, 2; 0, 0, 0, 2; 0, 0, 0, 0, 4; ...
Links
Programs
-
Maple
A130207 := proc(n,k) if k = n then numtheory[phi](n); else 0; end if; end proc: seq(seq(A130207(n,k),k=1..n),n=1..15) ;
-
PARI
for(n=1,9,for(k=2,n,print1("0, "));print1(eulerphi(n)", ")) \\ Charles R Greathouse IV, Feb 19 2013
-
PARI
A130207(n) = if(ispolygonal(n,3), eulerphi((sqrtint(1+(n*8))-1)/2), 0); \\ Antti Karttunen, Jan 17 2025
Formula
T(n,n) = A000010(n).
T(n,k) = 0, if k <> n.
Extensions
Data section extended up to a(105) by Antti Karttunen, Jan 17 2025