A130220 Number of partitions of n-set in which number of blocks of size k is odd (or zero) for every k.
1, 1, 1, 5, 5, 27, 117, 331, 1213, 6579, 47193, 140527, 1213841, 4617927, 48210879, 243443739, 2392565149, 10377087115, 125434781845, 725455816883, 8086277450629, 59694530600595, 614469256831895, 4650128350629285, 52385811781286769, 467607504075929863
Offset: 0
Examples
a(4)=5 because we have abcd, a|bcd, acd|b, abd|c and abc|d.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
g:=product(1+sinh(x^k/factorial(k)),k=1..30): gser:=series(g,x=0,28): seq(factorial(n)*coeff(gser,x,n),n=0..24); # Emeric Deutsch, Sep 01 2007 # second Maple program: with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(`if`(j=0 or irem(j, 2)=1, multinomial(n, n-i*j, i$j) /j!*b(n-i*j, i-1), 0), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[j == 0 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
Formula
E.g.f.: Product_{k>0} (1+sinh(x^k/k!)).
Extensions
More terms from Emeric Deutsch, Sep 01 2007