A130221 Number of partitions of n-set in which number of blocks of size 2k is odd (or zero) for every k.
1, 1, 2, 5, 12, 37, 158, 667, 2740, 13461, 74710, 412095, 2406880, 15450541, 103187698, 715323395, 5236160612, 40014337437, 318488475658, 2637143123027, 22603231117364, 201268520010153, 1855401760331982, 17624602999352535, 173071602624629536
Offset: 0
Examples
a(4)=12 because from the 15 (=A000110(4)) partitions of the 4-set {a,b,c,d} only the partitions ab|cd, ac|bd and ad|bc do not qualify.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
g:=exp(sinh(x))*(product(1+sinh(x^(2*k)/factorial(2*k)), k=1..25)): gser:= series(g,x=0,30): seq(factorial(n)*coeff(gser,x,n),n=0..23); # Emeric Deutsch, Aug 28 2007 # second Maple program: with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( `if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial( n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{ n - i*j}, Array[i &, j]]]/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Formula
E.g.f.: exp(sinh(x))*Product_{k>0} (1+sinh(x^(2*k)/(2*k)!)).
Extensions
More terms from Emeric Deutsch, Aug 28 2007