cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130221 Number of partitions of n-set in which number of blocks of size 2k is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 2, 5, 12, 37, 158, 667, 2740, 13461, 74710, 412095, 2406880, 15450541, 103187698, 715323395, 5236160612, 40014337437, 318488475658, 2637143123027, 22603231117364, 201268520010153, 1855401760331982, 17624602999352535, 173071602624629536
Offset: 0

Views

Author

Vladeta Jovovic, Aug 05 2007, Aug 05 2007

Keywords

Examples

			a(4)=12 because from the 15 (=A000110(4)) partitions of the 4-set {a,b,c,d} only the partitions ab|cd, ac|bd and ad|bc do not qualify.
		

Crossrefs

Programs

  • Maple
    g:=exp(sinh(x))*(product(1+sinh(x^(2*k)/factorial(2*k)), k=1..25)): gser:= series(g,x=0,30): seq(factorial(n)*coeff(gser,x,n),n=0..23); # Emeric Deutsch, Aug 28 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
           `if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial(
            n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{ n - i*j}, Array[i &, j]]]/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: exp(sinh(x))*Product_{k>0} (1+sinh(x^(2*k)/(2*k)!)).

Extensions

More terms from Emeric Deutsch, Aug 28 2007