cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130246 Partial sums of A130245.

Original entry on oeis.org

0, 1, 3, 6, 10, 14, 18, 23, 28, 33, 38, 44, 50, 56, 62, 68, 74, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 165, 173, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 269, 277, 285, 293, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391
Offset: 0

Views

Author

Hieronymus Fischer, May 19 2007

Keywords

Crossrefs

Other related sequences: A000032, A130241, A130243, A130244, A130248, A130251, A130252, A130255, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Magma
    [0] cat [(&+[1+Floor(Log((2*k+1)/2)/Log((1+Sqrt(5))/2)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Sep 09 2018
  • Mathematica
    Table[Sum[1 + Floor[Log[GoldenRatio, (2*k + 1)/2]], {k, 1, n}], {n, 0, 100}] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    for(n=0, 100, print1(sum(k=1,n, 1 + floor(log((2*k+1)/2)/log((1+sqrt(5))/2))), ", ")) \\ G. C. Greubel, Sep 09 2018
    

Formula

a(n) = Sum_{k=1..n} A130245(k).
a(n) = 1 +(n+1)*A130245(n) - A000032(A130245(n)+1) for n=0 or n >= 2.
G.f.: 1/(1-x)^2*Sum_{k>=0} x^A000032(k).