cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130278 Number of degree-n permutations such that number of cycles of size 2k-1 is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 1, 6, 17, 100, 529, 3766, 31121, 276984, 2755553, 29665306, 364627801, 4639937380, 64952094401, 973467571350, 15750475301921, 264870218828656, 4759194994114369, 90124395399063730, 1812001488739061417, 37956199941196210716, 832297726351555617569
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(4)=17 because only the following 7 permutations do not qualify: (1)(2)(3)(4), (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4) and (14)(2)(3).
		

Crossrefs

Programs

  • Maple
    g:=(product(1+sinh(x^(2*k-1)/(2*k-1)),k=1..30))/sqrt(1-x^2): gser:=series(g,x =0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=0 or irem(j, 2)=1, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i&, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: 1/sqrt(1-x^2)*Product_{k>0} (1+sinh(x^(2*k-1)/(2*k-1))).

Extensions

More terms from Emeric Deutsch, Aug 24 2007