cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A121263 Descending dungeons: see Comments lines for definition.

Original entry on oeis.org

10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 65, 87, 135, 239, 463, 943, 1967, 4143, 8751, 18479, 38959, 103471, 306223, 942127, 2932783, 9153583, 28562479, 89028655, 277145647, 861652015, 2675637295, 10173443119, 41132125231, 168836688943, 695134284847
Offset: 10

Views

Author

Marc LeBrun, Aug 23 2006

Keywords

Comments

Let "N_b" denote "N read in base b" and let "N" denote "N written in base 10" (as in normal life). The sequence is given by 10, 10_11, 10_(11_12), 10_(11_(12_13)), 10_(11_(12_(13_14))), etc., or in other words
......10....10.....10.....10.......etc.
..............11.....11.....11.........
.......................12.....12.......
................................13.....
where the subscripts are evaluated from the bottom upwards.
More precisely, "N_b" means "Take decimal expansion of N and evaluate it as if it were a base-b expansion".
If a number constructed by iterating exponentials is called a "tower", perhaps these numbers should be called "dungeons".
The sequence has steady growth until a(101), but then speeds up - see the extended table. For n <= 100, a(n) grows by less than a factor of 10 each iteration. For n >= 100, a(n)/a(99) at least squares each iteration. After a(1000) it will accelerate again and so on.
This is one of a family of four related sequences: alpha: A121263 (this sequence), beta: A121265, gamma: A121295, delta: A121296. The four main difference sequences are beta - alpha: A122734, beta - gamma: A127744, delta - alpha: A130287 and delta - gamma: A128916. The other two differences are gamma - alpha: A131011 and delta - beta: A131012.

Examples

			For example,
10
..11
....12
......13
........14
..........15
............16
..............17
................18
..................19
....................20
......................21
........................22
..........................23
is equal to 239.
		

References

  • David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.

Crossrefs

Cf. A122618 (= n_n), A121802 (the 2-adic limit of this sequence).

Programs

  • Maple
    M:=100; a:=list(10..M): a[10]:=10: lprint(10,a[10]); for n from 11 to M do b:=n; for i from n-1 by -1 to 11 do t1:=convert(i,base,10); b:=add(t1[j]*b^(j-1),j=1..nops(t1)): od: a[n]:=b; lprint(n,a[n]); od: # N. J. A. Sloane
    asubb := proc(a,b) local t1; t1:=convert(a,base,10); add(t1[j]*b^(j-1),j=1..nops(t1)): end; # asubb(a,b) evaluates a as if it were written in base b # N. J. A. Sloane
  • Python
    def a(n):
      a_of_n = [((10 + int(i))) for i in range(n)]
      while len(a_of_n) != 1:
        exponent = 0
        a_of_n [-2] = list(str(a_of_n [-2]))
        for i in range(len(a_of_n [-2])):
          a_of_n [-2] [-(i+1)] = int(a_of_n [-2] [-(i+1)])
          a_of_n [-2] [-(i+1)] *= ((a_of_n [-1]) ** exponent)
          exponent += 1
        a_of_n [-2] = sum(a_of_n [-2])
        a_of_n = a_of_n [:((len(a_of_n))-1)]
      return (a_of_n [0])
    # Noah J. Crandall, Dec 07 2020

Formula

If a, b >= 10, then a_b is roughly 10^(log(a)*log(b)) (all logs are base 10 and "roughly" means it is an upper bound and using floor(log()) gives a lower bound). Equivalently, there exists c > 0 such that for all a, b >= 10, 10^(c*log(a)*log(b)) <= a_b <= 10^(log(a)*log(b)). Thus a_n is roughly 10^(Product_{i=1..n} log(9+i)), or equivalently, a_n = 10^10^(n loglog n + O(n)). - David Applegate and N. J. A. Sloane, Aug 25 2006
Showing 1-1 of 1 results.