A130321 Triangle, (2^0, 2^1, 2^2, ...) in every column.
1, 2, 1, 4, 2, 1, 8, 4, 2, 1, 16, 8, 4, 2, 1, 32, 16, 8, 4, 2, 1, 64, 32, 16, 8, 4, 2, 1, 128, 64, 32, 16, 8, 4, 2, 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1
Offset: 0
Examples
The triangle T(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 1 2: 4 2 1 3: 8 4 2 1 4: 16 8 4 2 1 5: 32 16 8 4 2 1 6: 64 32 16 8 4 2 1 7: 128 64 32 16 8 4 2 1 8: 256 128 64 32 16 8 4 2 1 9: 512 256 128 64 32 16 8 4 2 1 10: 1024 512 256 128 64 32 16 8 4 2 1 ... Reformatted. - _Wolfdieter Lang_, Jan 10 2015
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Haskell
a130321 n k = a130321_tabl !! n !! k a130321_row n = a130321_tabl !! n a130321_tabl = iterate (\row -> (2 * head row) : row) [1] -- Reinhard Zumkeller, Feb 27 2013
-
Mathematica
T[n_, m_] := 2^(n-m); Table[T[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
Formula
Triangle, (1, 2, 4, 8, ...) in every column. Rows are reversals of A059268 terms.
a(n)=2^m, where m=(t*t + 3*t + 4)/2 - n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
From Wolfdieter Lang, Jan 10 2015: (Start)
T(n, m) = 2^(n-m) if n >= m >= 0 and 0 otherwise.
G.f. of row polynomials R(n,x) = Sum_{m=0..n} 2^(n-m)*x^m is 1/((1-2*z)*(1-x*z)) (Riordan property).
G.f. column m (with leading zeros) x^m/(1-2*x), m >= 0.
The diagonal sequences are D(k) = repeat(2^k), k >= 0. (End)
Extensions
More terms from Philippe Deléham, Feb 08 2009
Comments