A131816 Triangle read by rows: A130321 + A059268 - A000012 as infinite lower triangular matrices, where A130321 = (1; 2,1; 4,2,1; ...), A059268 = (1; 1,2; 1,2,4; ...) and A000012 = (1; 1,1; 1,1,1; ...).
1, 2, 2, 4, 3, 4, 8, 5, 5, 8, 16, 9, 7, 9, 16, 32, 17, 11, 11, 17, 32, 64, 33, 19, 15, 19, 33, 64, 128, 65, 35, 23, 23, 35, 65, 128, 256, 129, 67, 39, 31, 39, 67, 129, 256, 512, 257, 131, 71, 47, 47, 71, 131, 257, 512, 1024, 513, 259, 135, 79, 63, 79, 135, 259, 513, 1024
Offset: 0
Examples
First few rows of the triangle: 1; 2, 2; 4, 3, 4; 8, 5, 5, 8; 16, 9, 7, 9, 16; 32, 17, 11, 11, 17, 32; 64, 33, 19, 15, 19, 33, 64; 128, 65, 35, 23, 23, 35, 65, 128; ...
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- R. H. Hardin, Post to the SeqFan list, Feb 26 2013
Programs
-
Haskell
a131816 n k = a131816_tabl !! n !! k a131816_row n = a131816_tabl !! n a131816_tabl = map (map (subtract 1)) $ zipWith (zipWith (+)) a130321_tabl a059268_tabl -- Reinhard Zumkeller, Feb 27 2013
-
Mathematica
Table[Table[((2^(m + 1) - 1) + (2^(n - m + 1) - 1))/2, {m, 0, n}], {n, 0, 10}]; Flatten[%] (* Roger L. Bagula, Oct 16 2008 *)
Formula
T(n,m) = ((2^(m + 1) - 1) + (2^(n - m + 1) - 1))/2. - Roger L. Bagula, Oct 16 2008
Extensions
Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Comments