Original entry on oeis.org
1, 3, 1, 6, 3, 1, 12, 6, 3, 1, 24, 12, 6, 3, 1, 48, 24, 12, 6, 3, 1, 96, 48, 24, 12, 6, 3, 1, 96, 48, 24, 12, 6, 3, 1
Offset: 0
First few rows of the triangle:
1;
3, 1;
6, 3, 1;
12, 6, 3, 1;
24, 12, 6, 3, 1;
48, 24, 12, 6, 3, 1;
...
A033484
a(n) = 3*2^n - 2.
Original entry on oeis.org
1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470
Offset: 0
Binary: 1, 100, 1010, 10110, 101110, 1011110, 10111110, 101111110, 1011111110, 10111111110, 101111111110, 1011111111110, 10111111111110,
G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 46*x^4 + 94*x^5 + 190*x^6 + 382*x^7 + ...
- J. Riordan, Series-parallel realization of the sum modulo 2 of n switching variables, in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 877-878.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 3, 10.
- Dennis E. Davenport, Shakuan K. Frankson, Louis W. Shapiro, and Leon C. Woodson, An Invitation to the Riordan Group, Enum. Comb. Appl. (2024) Vol. 4, No. 3, Art. #S2S1. See p. 22.
- Erik D. Demaine et al., Picture-Hanging Puzzles, arXiv:1203.3602 [cs.DS], 2012, 2014. See p. 8, actually length(Sn) is 2^n+2^(n-1)-2, that is, a(n-1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Egor Lappo and Noah A. Rosenberg, A lattice structure for ancestral configurations arising from the relationship between gene trees and species trees, Adv. Appl. Math. 343 (2024), 65-81.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([0..35], n-> 3*2^n -2); # G. C. Greubel, Nov 18 2019
-
a033484 = (subtract 2) . (* 3) . (2 ^)
a033484_list = iterate ((subtract 2) . (* 2) . (+ 2)) 1
-- Reinhard Zumkeller, Apr 23 2013
-
[3*2^n-2: n in [1..36]]; // Vincenzo Librandi, Nov 22 2010
-
with(combinat):a:=n->stirling2(n,2)+stirling2(n+1,2): seq(a(n), n=1..35); # Zerinvary Lajos, Oct 07 2007
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=(a[n-1]+1)*2 od: seq(a[n], n=1..35); # Zerinvary Lajos, Feb 22 2008
-
Table[3 2^n - 2, {n, 0, 35}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
(* Start from Eric W. Weisstein, Sep 21 2017 *)
3*2^Range[0, 35] - 2
LinearRecurrence[{3, -2}, {1, 4}, 36]
CoefficientList[Series[(1+x)/(1-3x+2x^2), {x, 0, 35}], x] (* End *)
-
a(n) = 3<Charles R Greathouse IV, Nov 02 2011
-
[3*2^n -2 for n in (0..35)] # G. C. Greubel, Nov 18 2019
Showing 1-2 of 2 results.
Comments