A130405 Triangle where g.f. of row n = Product_{i=0..n} [F(i+1) + F(i)*x] for n>=0, where F(i) = A000045(i) is the i-th Fibonacci number.
1, 1, 1, 2, 3, 1, 6, 13, 9, 2, 30, 83, 84, 37, 6, 240, 814, 1087, 716, 233, 30, 3120, 12502, 20643, 18004, 8757, 2254, 240, 65520, 303102, 596029, 646443, 417949, 161175, 34342, 3120, 2227680, 11681388, 26630128, 34495671, 27785569, 14256879
Offset: 0
Examples
G.f. of row n = (1)(1+x)(2+x)(3+2x)(5+3x)*...*[F(n+1) + F(n)*x]: row 3 g.f.: (1+x)(2+x)(3+2x) = 6 + 13x + 9x^2 + 2x^3; row 4 g.f.: (1+x)(2+x)(3+2x)(5+3x) = 30 + 83x + 84x^2 + 37x^3 + 6x^4. Triangle begins: 1; 1, 1; 2, 3, 1; 6, 13, 9, 2; 30, 83, 84, 37, 6; 240, 814, 1087, 716, 233, 30; 3120, 12502, 20643, 18004, 8757, 2254, 240; 65520, 303102, 596029, 646443, 417949, 161175, 34342, 3120; ... Row vectors equal the product of flipped submatrices of Pascal's triangle; for example, row vector 3 is equal to the matrix product: [1 0 0 0] [1 1 0 0] [1 2 1 0] [1 3 3 1] = [6 13 9 2]; [0 0 0 0] [1 0 0 0] [1 1 0 0] [1 2 1 0] [0 0 0 0] [0 0 0 0] [1 0 0 0] [1 1 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [1 0 0 0] likewise, row 4 may be obtained by the product: [6 13 9 2 0] * [1 4 6 4 1] = [30 83 84 37 6] . ............. [1 3 3 1 0] ............. [1 2 1 0 0] ............. [1 1 0 0 0] ............. [1 0 0 0 0]
Programs
-
PARI
{T(n,k)=polcoeff(prod(i=0,n,round((fibonacci(i+1)+x*fibonacci(i)))),k)}
Comments