A130424 Main diagonal of array A[k,n] = n-th sum of k consecutive k-gonal numbers, k>2.
4, 30, 125, 365, 854, 1724, 3135, 5275, 8360, 12634, 18369, 25865, 35450, 47480, 62339, 80439, 102220, 128150, 158725, 194469, 235934, 283700, 338375, 400595, 471024, 550354, 639305, 738625, 849090, 971504, 1106699, 1255535, 1418900
Offset: 1
Examples
The array begins: k / A[k,n] 3.|...4..10..19...31...46...64...85..109.136.166...=A005448(n+1). 4.|..14..30..54...86..126..174..230..294.366.446...=A027575(n). 5.|..40..75.125..190..270..365..475..600.740... 6.|..95.161.251..365..503..665..851.1061.1295... 7.|.196.308.455..637..854.1106.1393.1715.2072... 8.|.364.540.764.1036.1356.1724.2140.2604.3116...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Polygonal Number.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Maple
P := proc(k,n) n*((k-2)*n-k+4)/2 ; end: A := proc(k,n) add( P(k,i),i=n..n+k-1) ; end: A130424 := proc(n) A(n+3,n) ; end: seq(A130424(n),n=0..40) ; # R. J. Mathar, Oct 28 2007
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1},{4,30,125,365,854},50] (* Harvey P. Dale, Jun 23 2020 *)
Formula
a(n) = A[n+2,n] = P(k+2,n) + P(k+2,n+1) + P(k+2,n+2) + ... P(k+2,n+k-1) where P(k,n) = k*((n-2)*k - (n-4))/2.
a(n) = (n+2)*(7*n^3-8*n^2+12*n-3)/6. [R. J. Mathar, Oct 30 2008]
G.f.: x*(4+10*x+15*x^2-x^4)/(1-x)^5. [Colin Barker, Sep 08 2012]
Extensions
More terms from R. J. Mathar, Oct 28 2007
Comments