cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130424 Main diagonal of array A[k,n] = n-th sum of k consecutive k-gonal numbers, k>2.

Original entry on oeis.org

4, 30, 125, 365, 854, 1724, 3135, 5275, 8360, 12634, 18369, 25865, 35450, 47480, 62339, 80439, 102220, 128150, 158725, 194469, 235934, 283700, 338375, 400595, 471024, 550354, 639305, 738625, 849090, 971504, 1106699, 1255535, 1418900
Offset: 1

Views

Author

Jonathan Vos Post, May 26 2007

Keywords

Comments

The first row of the array is the sum of 3 consecutive triangular numbers = A000217(n) + A000217(n+1) + A000217(n+2) = Centered triangular numbers: 3*n*(n-1)/2 + 1, for n>1. The second row of the array is the sum of 4 consecutive squares = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 = A027575(n). The third row of the array is the sum of 5 consecutive pentagonal numbers.

Examples

			The array begins:
k / A[k,n]
3.|...4..10..19...31...46...64...85..109.136.166...=A005448(n+1).
4.|..14..30..54...86..126..174..230..294.366.446...=A027575(n).
5.|..40..75.125..190..270..365..475..600.740...
6.|..95.161.251..365..503..665..851.1061.1295...
7.|.196.308.455..637..854.1106.1393.1715.2072...
8.|.364.540.764.1036.1356.1724.2140.2604.3116...
		

Crossrefs

Programs

  • Maple
    P := proc(k,n) n*((k-2)*n-k+4)/2 ; end: A := proc(k,n) add( P(k,i),i=n..n+k-1) ; end: A130424 := proc(n) A(n+3,n) ; end: seq(A130424(n),n=0..40) ; # R. J. Mathar, Oct 28 2007
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{4,30,125,365,854},50] (* Harvey P. Dale, Jun 23 2020 *)

Formula

a(n) = A[n+2,n] = P(k+2,n) + P(k+2,n+1) + P(k+2,n+2) + ... P(k+2,n+k-1) where P(k,n) = k*((n-2)*k - (n-4))/2.
a(n) = (n+2)*(7*n^3-8*n^2+12*n-3)/6. [R. J. Mathar, Oct 30 2008]
G.f.: x*(4+10*x+15*x^2-x^4)/(1-x)^5. [Colin Barker, Sep 08 2012]

Extensions

More terms from R. J. Mathar, Oct 28 2007