A130477 T(n,k) is the number of permutations of [n] with maximum descent k, T(n,k) for n >= 0 and 0 <= k <= n, triangle read by rows.
1, 1, 1, 1, 2, 3, 1, 3, 8, 12, 1, 4, 15, 40, 60, 1, 5, 24, 90, 240, 360, 1, 6, 35, 168, 630, 1680, 2520, 1, 7, 48, 280, 1344, 5040, 13440, 20160, 1, 8, 63, 432, 2520, 12096, 45360, 120960, 181440, 1, 9, 80, 630, 4320, 25200, 120960, 453600, 1209600, 1814400, 1, 10, 99, 880, 6930, 47520, 277200, 1330560, 4989600, 13305600, 19958400
Offset: 0
Examples
First few rows of the triangle A130461 = (1; 1, 1; 1, 1, 1; 1, 1, 2, 1; 1, 1, 2, 3, 1; 1, 1, 2, 6, 4, 1;...). Deleting the left border and taking finite differences at the top of each remaining column, we get the first few rows of this triangle: 1; 1, 1; 1, 2, 3; 1, 3, 8, 12; 1, 4, 15, 40, 60; 1, 5, 24, 90, 240, 360; 1, 6, 35, 168, 630, 1680, 2520; ...
Links
- L. Solus, Simplices for numeral systems, Transactions of the American Mathematical Society. DOI: https://doi.org/10.1090/tran/7424 (2017).
Crossrefs
Programs
-
Maple
T := (n,k) -> (n-k+1+0^k)*((n+1)!/(n-k+2)!): seq(seq(T(n,k),k=0..n),n=0..10); # Peter Luschny, Sep 17 2018
-
Mathematica
Flatten[Table[Table[(n - k + 1 + 0^k)*(n + 1)!/(n - k + 2)!, {k,0,n}], {n, 0, 10}], 1] (* Olivier Gérard, Aug 04 2012 *)
-
PARI
{T(n, k) = if( n<1 || k>n, 0, k==1, 1, n! * (n+1-k) / (n+2-k)!)}; /* Michael Somos, Jun 25 2017 */
Formula
Each term in n-th row divides n!.
Given triangle A130461 and deleting the left border (1,1,1,...) take finite differences by columns and reorient into rows.
T(n,k) = (n-k+1+0^k)*((n+1)!/(n-k+2)!) - Olivier Gérard, Aug 04 2012
Extensions
New name using a comment by Liam Solus, Peter Luschny, Sep 17 2018
Comments