A130505 a(n) = 3*a(n-1) if n is odd, otherwise 6*a(n-1).
1, 3, 18, 54, 324, 972, 5832, 17496, 104976, 314928, 1889568, 5668704, 34012224, 102036672, 612220032, 1836660096, 11019960576, 33059881728, 198359290368, 595077871104, 3570467226624, 10711401679872, 64268410079232, 192805230237696
Offset: 0
Examples
a(3) = 54 = 3 * a(2) = 3 * 18. a(4) = 324 = 6 * a(3) = 6 * 54.
References
- K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, 2006.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,18).
Programs
-
Mathematica
CoefficientList[Series[(1 + 3*x)/(1 - 2*(3*x)^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 17 2017 *)
-
PARI
a(n)=18^(n\2)*if(n%2,3,1) \\ Charles R Greathouse IV, Jan 10 2013
-
PARI
a(n)=([3,3; 3,-3]^n)[1,1] \\ Charles R Greathouse IV, Jan 10 2013
Formula
a(0) = 1; a(n), n>0 = 3*a(n-1) if n is odd. a(n), n even = 6 * a(n-1). Upper left term in M^n where M = the 2 X 2 matrix [3, 3; 3, -3].
a(n) = 18*a(n-2). - Charles R Greathouse IV, Jan 10 2013
a(n) = (3+3*i)^n/(s(n+2)+s(n)*i), where s(n)= round(sin(Pi*n/4)). - Gary Detlefs, Aug 04 2013
From Wolfdieter Lang, Sep 06 2013: (Start)
O.g.f.: (1+3*x)/(1-2*(3*x)^2) (see the Ch. R. Greathouse IV comment).
a(2*k) = 18^k, a(2*k+1) = 3*18^k, k>=0. (From the partial fraction decomposition of the o.g.f.) (End)
Sum_{n>=0} 1/a(n) = 24/17. - Amiram Eldar, Aug 27 2022
Extensions
Comment edited by Charles R Greathouse IV and M. F. Hasler, Jan 13 2013
Comments