A130542 The maximum absolute value of the L-series coefficient for an elliptic curve.
1, 2, 3, 2, 4, 6, 5, 3, 6, 8, 6, 6, 7, 10, 12, 4, 8, 12, 8, 8, 15, 12, 9, 9, 11, 14, 9, 10, 10, 24, 11, 8, 18, 16, 20, 12, 12, 16, 21, 12, 12, 30, 13, 12, 24, 18, 13, 12, 18, 22, 24, 14, 14, 18, 24, 15, 24, 20, 15, 24, 15, 22, 30, 8, 28, 36, 16, 16, 27, 40, 16, 18, 17, 24, 33, 16, 30, 42
Offset: 1
Examples
For example abs(A007653(n)) <= a(n) for all n where A007653 is the L-series for the curve y^2 - y = x^3 - x.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.
- W. C. Waterhouse, Abelian varieties over finite fields, Ann Sci. E.N.S., (4) 2 (1969), 521-560.
Programs
-
Sage
def a(n): ans, fcts = 1, Integer(n).factor() for pp in fcts: max_ap = 1 for ap in range(-floor(2*sqrt(pp[0])), floor(2*sqrt(pp[0]))+1): app = [1, ap] for i in range(pp[1]-1): app.append(app[1]*app[-1]-pp[0]*app[-2]) max_ap = max(max_ap, abs(app[-1])) ans *= max_ap return ans # Robin Visser, Oct 21 2023
Formula
For primes p : a(p) = floor(2*sqrt(p)) and a(p^2) = floor(2*sqrt(p))^2 - p [Deuring-Waterhouse]. - Robin Visser, Oct 21 2023
Comments