A130561 Numbers associated to partitions, used for combinatoric interpretation of Lah triangle numbers A105278; elementary Schur polynomials / functions.
1, 2, 1, 6, 6, 1, 24, 24, 12, 12, 1, 120, 120, 120, 60, 60, 20, 1, 720, 720, 720, 360, 360, 720, 120, 120, 180, 30, 1, 5040, 5040, 5040, 5040, 2520, 5040, 2520, 2520, 840, 2520, 840, 210, 420, 42, 1, 40320, 40320, 40320, 40320, 20160, 20160, 40320, 40320, 20160
Offset: 1
Examples
Triangle starts: [ 1]; [ 2, 1]; [ 6, 6, 1]; [ 24, 24, 12, 12, 1]; [120, 120, 120, 60, 60, 20, 1]; ... a(5,6) = 20 = 5!/(3!*1!) because the 6th partition of 5 in A-St order is [1^3,2^1]. a(5,5) = 60 enumerates the unordered [1^1,2^2]-forest with 5 vertices (including the three roots) composed of three such increasing binary trees: 5*((binomial(4,2)*2)*(1*2))/2! = 5*12 = 60.
References
- E. Arbarello, "Sketches of KdV", Contemp. Math. 312 (2002), p. 9-69.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- P. Balduf, The propagator and diffeomorphisms of an interacting field theory, Master's thesis, submitted to the Institut für Physik, Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universtität, Berlin, 2018.
- F. Bracci, M. Contreras, S. Díaz-Madrigal, and A. Vasil'ev, Classical and stochastic Löwner-Kufarev equations, arXiv:1309.6423 [math.CV], 2013.
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- T. Copeland, Lagrange a la Lah
- T. Copeland, Formal group laws and binomial Sheffer sequences, 2018.
- T. Copeland, In the Realm of Shadows: Umbral inverses and associahedra, noncrossing partitions, symmetric polynomials, and similarity transforms, 2019.
- G. Duchamp, Important formulas in combinatorics: The exponential formula, a Mathoverflow answer, 2015
- T. Ernst, A history of the q-calculus and a new method, 2000.
- B. Konopelchenko, Quantum deformations of associative algebras and integrable systems, arXiv:0802.3022 [nlin.SI], 2008.
- D. Kreimer and K. Yeats, Diffeomorphisms of quantum fields, arXiv:1610.01837 [math-ph], 2016.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
- Wolfdieter Lang, First 10 rows and more.
- J. Novak and M. LaCroix, Three lectures on free probability, arXiv:1205.2097 [math.CO], 2012.
- G. Segal and G. Wilson, Loop groups and equations of KdV type, Publications mathématiques de l’I.H.É.S., tome 61, 1985, p. 5-65.
Crossrefs
Formula
a(n,k) = n!/(Product_{j=1..n} e(n,k,j)!) with the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1.
From Tom Copeland, Sep 18 2011: (Start)
Raising and lowering operators are given for the partition polynomials formed from A130561 in the Copeland link in "Lagrange a la Lah Part I" on pp. 22-23.
An e.g.f. for the partition polynomials is on page 3:
exp[t*:c.*x/(1-c.*x):] = exp[t*(c_1*x + c_2*x^2 + c_3*x^3 + ...)] where :(...): denotes umbral evaluation of the enclosed expression and c. is an umbral coefficient. (End)
From Tom Copeland, Sep 07 2016: (Start)
The row partition polynomials of this array P(n,x_1,x_2,...,x_n), given in the Lang link, are n! * S(n,x_1,x_2,...,x_n), where S(n,x_1,...,x_n) are the elementary Schur polynomials, for which d/d(x_m) S(n,x_1,...,x_n) = S(n-m,x_1,...,x_(n-m)) with S(k,...) = 0 for k < 0, so d/d(x_m) P(n,x_1,...,x_n) = (n!/(n-m)!) P(n-m,x_1,...,x_(n-m)), confirming that the row polynomials form an Appell sequence in the indeterminate x_1 with P(0,...) = 1. See p. 127 of the Ernst paper for more on these Schur polynomials.
With the e.g.f. exp[t * P(.,x_1,x_2,..)] = exp(t*x_1) * exp(x_2 t^2 + x_3 t^3 + ...), the e.g.f. for the partition polynomials that form the umbral compositional inverse sequence U(n,x_1,...,x_n) in the indeterminate x_1 is exp[t * U(.,x_1,x_2,...)] = exp(t*x_1) exp[-(x_2 t^2 + x_3 t^3 + ...)]; therefore, U(n,x_1,x_2,...,x_n) = P(n,x_1,-x_2,.,-x_n), so umbrally P[n,P(.,x_1,-x_2,-x_3,...),x_2,x_3,...,x_n] = (x_1)^n = P[n,P(.,x_1,x_2,...),-x_2,-x_3,...,-x_n]. For example, P(1,x_1) = x_1, P2(x_1,x_2) = 2 x_2 + x_1^2, and P(3,x_1,x_2,x_3) = 6 x_3 + 6 x_2 x_1 + x_1^3, then P[3,P(.,x_1,-x_2,...),x_2,x_3] = 6 x_3 + 6 x_2 P(1,x_1) + P(3,x_1,-x_2,-x_3) = 6 x_3 + 6 x_2 x_1 + 6 (-x_3) + 6 (-x_2) x_1 + x_1^3 = x_1^3.
From the Appell formalism, umbrally [P(.,0,x_2,x_3,...) + y]^n = P(n,y,x_2,x_3,...,x_n).
The indeterminates of the partition polynomials can also be extracted using the Faber polynomials of A263916 with -n * x_n = F(n,S(1,x_1),...,S(n,x_1,...,x_n)) = F(n,P(1,x_1),...,P(n,x_1,...,x_n)/n!). Compare with A263634.
Also P(n,x_1,...,x_n) = ST1(n,x_1,2*x_2,...,n*x_n), where ST1(n,...) are the row partition polynomials of A036039.
(End)
Extensions
Name augmented by Tom Copeland, Dec 08 2022
Comments