cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A008297 Triangle of Lah numbers.

Original entry on oeis.org

-1, 2, 1, -6, -6, -1, 24, 36, 12, 1, -120, -240, -120, -20, -1, 720, 1800, 1200, 300, 30, 1, -5040, -15120, -12600, -4200, -630, -42, -1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, -362880, -1451520, -1693440, -846720, -211680, -28224, -2016, -72, -1, 3628800, 16329600, 21772800, 12700800
Offset: 1

Views

Author

Keywords

Comments

|a(n,k)| = number of partitions of {1..n} into k lists, where a list means an ordered subset.
Let N be a Poisson random variable with parameter (mean) lambda, and Y_1,Y_2,... independent exponential(theta) variables, independent of N, so that their density is given by (1/theta)*exp(-x/theta), x > 0. Set S=Sum_{i=1..N} Y_i. Then E(S^n), i.e., the n-th moment of S, is given by (theta^n) * L_n(lambda), n >= 0, where L_n(y) is the Lah polynomial Sum_{k=0..n} |a(n,k)| * y^k. - Shai Covo (green355(AT)netvision.net.il), Feb 09 2010
For y = lambda > 0, formula 2) for the Lah polynomial L_n(y) dated Feb 02 2010 can be restated as follows: L_n(lambda) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) lambda. - Shai Covo (green355(AT)netvision.net.il), Feb 10 2010
See A111596 for an expression of the row polynomials in terms of an umbral composition of the Bell polynomials and relation to an inverse Mellin transform and a generalized Dobinski formula. - Tom Copeland, Nov 21 2011
Also the Bell transform of the sequence (-1)^(n+1)*(n+1)! without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Named after the Slovenian mathematician and actuary Ivo Lah (1896-1979). - Amiram Eldar, Jun 13 2021

Examples

			|a(2,1)| = 2: (12), (21); |a(2,2)| = 1: (1)(2). |a(4,1)| = 24: (1234) (24 ways); |a(4,2)| = 36: (123)(4) (6*4 ways), (12)(34) (3*4 ways); |a(4,3)| = 12: (12)(3)(4) (6*2 ways); |a(4,4)| = 1: (1)(2)(3)(4) (1 way).
Triangle:
    -1;
     2,    1;
    -6,   -6,   -1;
    24,   36,   12,   1;
  -120, -240, -120, -20, -1; ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • Shai Covo, The moments of a compound Poisson process with exponential or centered normal jumps, J. Probab. Stat. Sci., Vol. 7, No. 1 (2009), pp. 91-100.
  • Theodore S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176; the sequence called {!}^{n+}. For a link to this paper see A000262.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
  • S. Gill Williamson, Combinatorics for Computer Science, Computer Science Press, 1985; see p. 176.

Crossrefs

Same as A066667 and A105278 except for signs. Other variants: A111596 (differently signed triangle and (0,0)-based), A271703 (unsigned and (0,0)-based), A089231.
A293125 (row sums) and A000262 (row sums of unsigned triangle).
Columns 1-6 (unsigned): A000142, A001286, A001754, A001755, A001777, A001778.
A002868 gives maximal element (in magnitude) in each row.
A248045 (central terms, negated). A130561 is a natural refinement.

Programs

  • Haskell
    a008297 n k = a008297_tabl !! (n-1) !! (k-1)
    a008297_row n = a008297_tabl !! (n-1)
    a008297_tabl = [-1] : f [-1] 2 where
       f xs i = ys : f ys (i + 1) where
         ys = map negate $
              zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Sep 30 2014
    
  • Maple
    A008297 := (n,m) -> (-1)^n*n!*binomial(n-1,m-1)/m!;
  • Mathematica
    a[n_, m_] := (-1)^n*n!*Binomial[n-1, m-1]/m!; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012, after Maple *)
    T[n_, n_] := (-1)^n; T[n_, k_]/;0Oliver Seipel, Dec 06 2024 *)
  • PARI
    T(n, m) = (-1)^n*n!*binomial(n-1, m-1)/m!
    for(n=1,9, for(m=1,n, print1(T(n,m)", "))) \\ Charles R Greathouse IV, Mar 09 2016
    
  • Perl
    use bigint; use ntheory ":all"; my @L; for my $n (1..9) { push @L, map { stirling($n,$,3)*(-1)**$n } 1..$n; } say join(", ",@L); # _Dana Jacobsen, Mar 16 2017
  • Sage
    def A008297_triangle(dim): # computes unsigned T(n, k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(2+2*k)*M[n-1,k]+((k+1)*(k+2))*M[n-1,k+1]
        return M
    A008297_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) = (-1)^n*n!*A007318(n-1, m-1)/m!, n >= m >= 1.
a(n+1, m) = (n+m)*a(n, m)+a(n, m-1), a(n, 0) := 0; a(n, m) := 0, n < m; a(1, 1)=1.
a(n, m) = ((-1)^(n-m+1))*L(1, n-1, m-1) where L(1, n, m) is the triangle of coefficients of the generalized Laguerre polynomials n!*L(n, a=1, x). These polynomials appear in the radial l=0 eigen-functions for discrete energy levels of the H-atom.
|a(n, m)| = Sum_{k=m..n} |A008275(n, k)|*A008277(k, m), where A008275 = Stirling numbers of first kind, A008277 = Stirling numbers of second kind. - Wolfdieter Lang
If L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k (a Lah polynomial) then the e.g.f. for L_n(y) is exp(x*y/(1-x)). - Vladeta Jovovic, Jan 06 2001
E.g.f. for the k-th column (unsigned): x^k/(1-x)^k/k!. - Vladeta Jovovic, Dec 03 2002
a(n, k) = (n-k+1)!*N(n, k) where N(n, k) is the Narayana triangle A001263. - Philippe Deléham, Jul 20 2003
From Shai Covo (green355(AT)netvision.net.il), Feb 02 2010: (Start)
We have the following expressions for the Lah polynomial L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k -- exact generalizations of results in A000262 for A000262(n) = L_n(1):
1) L_n(y) = y*exp(-y)*n!*M(n+1,2,y), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind;
2) L_n(y) = exp(-y)* Sum_{m>=0} y^m*[m]^n/m!, n>=0, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial;
3) L_n(y) = (2n-2+y)L_{n-1}(y)-(n-1)(n-2)L_{n-2}(y), n>=2;
4) L_n(y) = y*(n-1)!*Sum_{k=1..n} (L_{n-k}(y) k!)/((n-k)! (k-1)!), n>=1. (End)
The row polynomials are given by D^n(exp(-x*t)) evaluated at x = 0, where D is the operator (1-x)^2*d/dx. Cf. A008277 and A035342. - Peter Bala, Nov 25 2011
n!C(-xD,n) = Lah(n,:xD:) where C(m,n) is the binomial coefficient, xD= x d/dx, (:xD:)^k = x^k D^k, and Lah(n,x) are the row polynomials of this entry. E.g., 2!C(-xD,2)= 2 xD + x^2 D^2. - Tom Copeland, Nov 03 2012
From Tom Copeland, Sep 25 2016: (Start)
The Stirling polynomials of the second kind A048993 (A008277), i.e., the Bell-Touchard-exponential polynomials B_n[x], are umbral compositional inverses of the Stirling polynomials of the first kind signed A008275 (A130534), i.e., the falling factorials, (x)_n = n! binomial(x,n); that is, umbrally B_n[(x).] = x^n = (B.[x])_n.
An operational definition of the Bell polynomials is (xD_x)^n = B_n[:xD:], where, by definition, (:xD_x:)^n = x^n D_x^n, so (B.[:xD_x:])_n = (xD_x)_n = :xD_x:^n = x^n (D_x)^n.
Let y = 1/x, then D_x = -y^2 D_y; xD_x = -yD_y; and P_n(:yD_y:) = (-yD_y)_n = (-1)^n (1/y)^n (y^2 D_y)^n, the row polynomials of this entry in operational form, e.g., P_3(:yD_y:) = (-yD_y)_3 = (-yD_y) (yD_y-1) (yD_y-2) = (-1)^3 (1/y)^3 (y^2 D_y)^3 = -( 6 :yD_y: + 6 :yD_y:^2 + :yD_y:^3 ) = - ( 6 y D_y + 6 y^2 (D_y)^2 + y^3 (D_y)^3).
Therefore, P_n(y) = e^(-y) P_n(:yD_y:) e^y = e^(-y) (-1/y)^n (y^2 D_y)^n e^y = e^(-1/x) x^n (D_x)^n e^(1/x) = P_n(1/x) and P_n(x) = e^(-1/x) x^n (D_x)^n e^(1/x) = e^(-1/x) (:x D_x:)^n e^(1/x). (Cf. also A094638.) (End)
T(n,k) = Sum_{j=k..n} (-1)^j*A008296(n,j)*A360177(j,k). - Mélika Tebni, Feb 02 2023

A036040 Irregular triangle of multinomial coefficients, read by rows (version 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 3, 6, 1, 1, 5, 10, 10, 15, 10, 1, 1, 6, 15, 10, 15, 60, 15, 20, 45, 15, 1, 1, 7, 21, 35, 21, 105, 70, 105, 35, 210, 105, 35, 105, 21, 1, 1, 8, 28, 56, 35, 28, 168, 280, 210, 280, 56, 420, 280, 840, 105, 70, 560, 420, 56, 210, 28, 1, 1, 9, 36, 84, 126, 36, 252
Offset: 1

Views

Author

Keywords

Comments

This is different from A080575 and A178867.
T(n,m) = count of set partitions of n with block lengths given by the m-th partition of n.
From Tilman Neumann, Oct 05 2008: (Start)
These are also the coefficients occurring in complete Bell polynomials, Faa di Bruno's formula (in its simplest form) and computation of moments from cumulants.
Though the Bell polynomials seem quite unwieldy, they can be computed easily as the determinant of an n-dimensional square matrix. (See, e.g., Coffey (2006) and program below.)
The complete Bell polynomial of the first n primes gives A007446. (End)
From Tom Copeland, Apr 29 2011: (Start)
A relation between partition polynomials formed from these "refined" Stirling numbers of the second kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
For simple diagrams of the relation between connected graphs, cumulants, and A036040, see the references on statistical physics below. In some sense, these graphs are duals of the umbral bouquets presented in "Lagrange a la Lah". (End)
These M3 (Abramowitz-Stegun) partition polynomials are the complete Bell polynomials (see a comment above) with recurrence (see the Wikipedia link) B_0 = 1, B_n = Sum_{k=0..n-1} binomial(n-1,k) * B_{n-1-k}*x[k+1], n >= 1. - Wolfdieter Lang, Aug 31 2016
With the indeterminates (x_1, x_2, x_3,...) = (t, -c_2*t, -c_3*t, ...) with c_n > 0, umbrally B(n,a.) = B(n,t)|{t^n = a_n} = 0 and B(j,a.)B(k,a.) = B(j,t)B(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A134685. - Tom Copeland, Feb 09 2018
For applications to functionals in quantum field theory, see Figueroa et al., Brouder, Kreimer and Yeats, and Balduf. In the last two papers, the Bell polynomials with the indeterminates (x_1, x_2, x_3,...) = (c_1, 2!c_2, 3!c_3, ...) are equivalent to the partition polynomials of A130561 in the indeterminates c_n. - Tom Copeland, Dec 17 2019
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced below. (End)
From Tom Copeland, Jun 12 2021: (Start)
These Bell polynomials and their relations to the Faa di Bruno Hopf bialgebra, correlation functions in quantum field theory, and the moment-cumulant duality are given on pp. 134 -144 of Zeidler.
An interpretation of the coefficients of the polynomials is given in expositions of the exponential formula, or principle, in Cameron et al., Duchamp, Duchamp et al., Labelle and Leroux, and Scott and Sokal along with some history. The simplest applications of this principle are given in A060540. (End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  3,  6,  1;
  1,  5, 10, 10, 15, 10,  1;
  1,  6, 15, 10, 15, 60, 15, 20, 45, 15, 1;
  ...
The first partition of 3 (i.e., (3)) induces the set {{1, 2, 3}}, so T(3, 1) = 1; the second one (i.e., (2, 1)) the sets {{1, 2}, {3}}, {{1, 3}, {2}}, and {{2, 3}, {1}}, so T(3, 2) = 3; and the third one (i.e., (1, 1, 1)) the set {{1}, {2}, {3}}, so T(3, 1) = 1. - _Lorenzo Sauras Altuzarra_, Jun 20 2022
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_3".
  • C. Itzykson and J. Drouffe, Statistical Field Theory Vol. 2, Cambridge Univ. Press, 1989, page 412.
  • S. Ma, Statistical Mechanics, World Scientific, 1985, page 205.
  • E. Zeidler, Quantum Field Theory II: Quantum Electrodynamics, Springer, 2009.

Crossrefs

See A080575 for another version.
Row sums are the Bell numbers A000110.
Cf. A000040, A007446, A178866 and A178867 (version 3).
Cf. A127671.
Cf. A060540 for the coefficients of the compositions e^{ x^m/m! }.

Programs

  • Maple
    with(combinat): nmax:=8: for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036040(n,m):= n!/(mul((t!)^q(t)*q(t)!,t=1..n)); od: od: seq(seq(A036040(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jun 21 2010, Jul 12 2016
  • Mathematica
    runs[li:{__Integer}] := ((Length/@ Split[ # ]))&[Sort@ li]; Table[temp=Map[Reverse, Sort@ (Sort/@ IntegerPartitions[w]), {1}]; Apply[Multinomial, temp, {1}]/Apply[Times, (runs/@ temp)!, {1}], {w, 6}]
  • MuPAD
    completeBellMatrix := proc(x,n) // x - vector x[1]...x[m], m>=n
    local i,j,M; begin
    M := matrix(n,n): // zero-initialized
    for i from 1 to n-1 do M[i,i+1] := -1: end_for:
    for i from 1 to n do for j from 1 to i do
        M[i,j] := binomial(i-1,j-1)*x[i-j+1]: end_for: end_for:
    return (M): end_proc:
    completeBellPoly := proc(x, n) begin
    return (linalg::det(completeBellMatrix (x,n))): end_proc:
    for i from 1 to 10 do print(i, completeBellPoly(x,i)): end_for:
    // Tilman Neumann, Oct 05 2008
    
  • PARI
    A036040_poly(n,V=vector(n,i,eval(Str('x,i))))={matdet(matrix(n,n,i,j,if(j<=i,binomial(i-1,j-1)*V[n-i+j],-(j==i+1))))} \\ Row n of the sequence is made of the coefficients of the monomials ordered by increasing total order (sum of powers) and then lexicographically. - M. F. Hasler, Nov 16 2013, updated Jul 12 2014
    
  • Sage
    from collections import Counter
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A036040_row(n):
        h = lambda p: product(map(factorial, Counter(p).values()))
        return [multinomial(p)//h(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A036040_row(n))
    # Peter Luschny, Dec 18 2016, corrected Apr 30 2022

Formula

E.g.f.: A(t) = exp(Sum_{k>=1} x[k]*(t^k)/k!).
T(n,m) is the coefficient of ((t^n)/n!)* x[1]^e(m,1)*x[2]^e(m,2)*...*x[n]^e(m,n) in A(t). Here the m-th partition of n, counted in Abramowitz-Stegun(A-St) order, is [1^e(m,1), 2^e(m,2), ..., n^e(m,n)] with e(m,j) >= 0 and if e(m, j)=0 then j^0 is not recorded.
a(n, m) = n!/Product_{j=1..n} j!^e(m,j)*e(m,j)!, with [1^e(m,1), 2^e(m,2), ..., n^e(m, n)] the m-th partition of n in the mentioned A-St order.
With the notation in the Lang reference, x(1) treated as a variable and D the derivative w.r.t. x(1), a raising operator for the polynomial S(n,x(1)) = P3_n(x[1], ..., x[n]) is R = Sum_{n>=0} x(n+1) D^n / n! ; i.e., R S(n, x(1)) = S(n+1, x(1)). The lowering operator is D; i.e., D S(n, x(1)) = n S(n-1, x(1)). The sequence of polynomials is an Appell sequence, so [S(.,x(1)) + y]^n = S(n, x(1) + y). For x(j) = (-1)^(j-1)* (j-1)! for j > 1, S(n, x(1)) = [x(1) - 1]^n + n [x(1) - 1]^(n-1). - Tom Copeland, Aug 01 2008
Raising and lowering operators are given for the partition polynomials formed from A036040 in the link in "Lagrange a la Lah Part I" on page 22. - Tom Copeland, Sep 18 2011
The n-th row is generated by the determinant of [Sum_{k=0..n-1} (x_(k+1)*(dP_n)^k/k!) - S_n], where dP_n is the n X n submatrix of A132440 and S_n is the n X n submatrix of A129185. The coefficients are flagged by the partitions of n represented by the monomials in the indeterminates x_k. Letting all x_n = t, generates the Bell / Touchard / exponential polynomials of A008277. - Tom Copeland, May 03 2014
The partition polynomials of A036039 are obtained by substituting (n-1)! x[n] for x[n] in the partition polynomials of this entry. - Tom Copeland, Nov 17 2015
-(n-1)! F(n, B(1, x[1]), B(2, x[1], x[2])/2!, ..., B(n, x[1], ..., x[n])/n!) = x[n] extracts the indeterminates of the complete Bell partition polynomials B(n, x[1], ..., x[n]) of this entry, where F(n, x[1], ..., x[n]) are the Faber polynomials of A263916. (Compare with A263634.) - Tom Copeland, Nov 29 2015; Sep 09 2016
T(n, m) = A127671(n, m)/A264753(n, m), n >= 1 and 1 <= m <= A000041(n). - Johannes W. Meijer, Jul 12 2016
From Tom Copeland, Sep 07 2016: (Start)
From the connections among the elementary Schur polynomials and the partition polynomials of A130561, A036039 and this array, the partition polynomials of this array satisfy (d/d(x_m)) P(n, x_1, ..., x_n) = binomial(n,m) * P(n-m, x_1, ..., x_(n-m)) with P(k, x_1, ..., x_n) = 0 for k < 0.
Just as in the discussion and example in A130561, the umbral compositional inverse sequence is given by the sequence P(n, x_1, -x_2, -x_3, ..., -x_n).
(End)
The partition polynomials with an index shift can be generated by (v(x) + d/dx)^n v(x). Cf. Guha, p. 12. - Tom Copeland, Jul 19 2018

Extensions

More terms from David W. Wilson
Additional comments from Wouter Meeussen, Mar 23 2003

A036038 Triangle of multinomial coefficients.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720, 1, 7, 21, 35, 42, 105, 140, 210, 210, 420, 630, 840, 1260, 2520, 5040, 1, 8, 28, 56, 70, 56, 168, 280, 420, 560, 336, 840, 1120, 1680, 2520, 1680, 3360, 5040, 6720
Offset: 1

Views

Author

Keywords

Comments

The number of terms in the n-th row is the number of partitions of n, A000041(n). - Amarnath Murthy, Sep 21 2002
For each n, the partitions are ordered according to A-St: first by length and then lexicographically (arranging the parts in nondecreasing order), which is different from the usual practice of ordering all partitions lexicographically. - T. D. Noe, Nov 03 2006
For this ordering of the partitions, for n >= 1, see the remarks and the C. F. Hindenburg link given in A036036. - Wolfdieter Lang, Jun 15 2012
The relation (n+1) * A134264(n+1) = A248120(n+1) / a(n) where the arithmetic is performed for matching partitions in each row n connects the combinatorial interpretations of this array to some topological and algebraic constructs of the two other entries. Also, these seem (cf. MOPS reference, Table 2) to be the coefficients of the Jack polynomial J(x;k,alpha=0). - Tom Copeland, Nov 24 2014
The conjecture on the Jack polynomials of zero order is true as evident from equation a) on p. 80 of the Stanley reference, suggested to me by Steve Kass. The conventions for denoting the more general Jack polynomials J(n,alpha) vary. Using Stanley's convention, these Jack polynomials are the umbral extensions of the multinomial expansion of (s_1*x_1 + s_2*x_2 + ... + s_(n+1)*x_(n+1))^n in which the subscripts of the (s_k)^j in the symmetric monomial expansions are finally ignored and the exponent dropped to give s_j(alpha) = j-th row polynomial of A094638 or |A008276| in ascending powers of alpha. (The MOPS table has some inconsistency between n = 3 and n = 4.) - Tom Copeland, Nov 26 2016

Examples

			1;
1, 2;
1, 3,  6;
1, 4,  6, 12, 24;
1, 5, 10, 20, 30, 60, 120;
1, 6, 15, 20, 30, 60,  90, 120, 180, 360, 720;
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".

Crossrefs

Cf. A036036-A036040. Different from A078760. Row sums give A005651.
Cf. A183610 is a table of sums of powers of terms in rows.
Cf. A134264 and A248120.
Cf. A096162 for connections to A130561.

Programs

  • Maple
    nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036038(n, m) := n!/ (mul((t!)^q(t), t=1..n)); od: od: seq(seq(A036038(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
  • Mathematica
    Flatten[Table[Apply[Multinomial, Reverse[Sort[IntegerPartitions[i],  Length[ #1]>Length[ #2]&]], {1}], {i,9}]] (* T. D. Noe, Nov 03 2006 *)
  • Sage
    def ASPartitions(n, k):
        Q = [p.to_list() for p in Partitions(n, length=k)]
        for q in Q: q.reverse()
        return sorted(Q)
    def A036038_row(n):
        return [multinomial(p) for k in (0..n) for p in ASPartitions(n, k)]
    for n in (1..10): print(A036038_row(n))
    # Peter Luschny, Dec 18 2016, corrected Apr 30 2022

Formula

The n-th row is the expansion of (x_1 + x_2 + ... + x_(n+1))^n in the basis of the monomial symmetric polynomials (m.s.p.). E.g., (x_1 + x_2 + x_3 + x_4)^3 = m[3](x_1,..,x_4) + 3*m[1,2](x_1,..,x_4) + 6*m[1,1,1](x_1,..,x_4) = (Sum_{i=1..4} x_i^3) + 3*(Sum_{i,j=1..4;i != j} x_i^2 x_j) + 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k). The number of indeterminates can be increased indefinitely, extending each m.s.p., yet the expansion coefficients remain the same. In each m.s.p., unique combinations of exponents and subscripts appear only once with a coefficient of unity. Umbral reduction by replacing x_k^j with x_j in the expansions gives the partition polynomials of A248120. - Tom Copeland, Nov 25 2016
From Tom Copeland, Nov 26 2016: (Start)
As an example of the umbral connection to the Jack polynomials: J(3,alpha) = (Sum_{i=1..4} x_i^3)*s_3(alpha) + 3*(Sum_{i,j=1..4;i!=j} x_i^2 x_j)*s_2(alpha)*s_1(alpha)+ 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k)*s_1(alpha)*s_1(alpha)*s_1(alpha) = (Sum_{i=1..4} x_i^3)*(1+alpha)*(1+2*alpha)+ 3*(sum_{i,j=1..4;i!=j} x_i^2 x_j)*(1+alpha) + 6*(Sum_{i,j,k=1..4;i < j < k} x_i x_j x_k).
See the Copeland link for more relations between the multinomial coefficients and the Jack symmetric functions. (End)

Extensions

More terms from David W. Wilson and Wouter Meeussen

A036039 Irregular triangle of multinomial coefficients of integer partitions read by rows (in Abramowitz and Stegun ordering) giving the coefficients of the cycle index polynomials for the symmetric groups S_n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 40, 90, 120, 15, 40, 45, 15, 1, 720, 840, 504, 420, 504, 630, 280, 210, 210, 420, 105, 70, 105, 21, 1, 5040, 5760, 3360, 2688, 1260, 3360, 4032, 3360, 1260, 1120, 1344, 2520, 1120, 1680, 105, 420, 1120, 420, 112, 210, 28, 1
Offset: 1

Views

Author

Keywords

Comments

The sequence of row lengths is A000041(n), n >= 1 (partition numbers).
Number of permutations whose cycle structure is the given partition. Row sums are factorials (A000142). - Franklin T. Adams-Watters, Jan 12 2006
A relation between partition polynomials formed from these "refined" Stirling numbers of the first kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
These cycle index polynomials for the symmetric group S_n are also related to a raising operator / infinitesimal generator for fractional integro-derivatives, involving the digamma function and the Riemann zeta function values at positive integers, and to the characteristic polynomial for the adjacency matrix of complete n-graphs A055137 (cf. MathOverflow link). - Tom Copeland, Nov 03 2012
In the Lang link, replace all x(n) by t to obtain A132393. Furthermore replace x(1) by t and all other x(n) by 1 to obtain A008290. See A274760. - Tom Copeland, Nov 06 2012, Oct 29 2015 - corrected by Johannes W. Meijer, Jul 28 2016
The umbral compositional inverses of these polynomials are formed by negating the indeterminates x(n) for n>1, i.e., P(n,P(.,x(1),-x(2),-x(3),...),x(2),x(3),...) = x(1)^n (cf. A130561 for an example of umbral compositional inversion). The polynomials are an Appell sequence in x(1), i.e., dP(n,x(1))/dx(1) = n P(n-1, x(1)) and (P(.,x)+y)^n=P(n,x+y) umbrally, with P(0,x(1))=1. - Tom Copeland, Nov 14 2014
Regarded as the coefficients of the partition polynomials listed by Lang, a signed version of these polynomials IF(n,b1,b2,...,bn) (n! times polynomial on page 184 of Airault and Bouali) provides an inversion of the Faber polynomials F(n,b1,b2,...,bn) (page 52 of Bouali, A263916, and A115131). For example, F(3, IF(1,b1), IF(2,b1,b2)/2!, IF(3,b1,b2,b3)/3!) = b3 and IF(3, F(1,b1), F(2,b1,b2), F(3,b1,b2,b3))/3! = b3 with F(1,b1) = -b1. (Compare with A263634.) - Tom Copeland, Oct 28 2015; Sep 09 2016
The e.g.f. for the row partition polynomials is Sum_{n>=0} P_n(b_1,...,b_n) x^n/n! = exp[Sum_{n>=1} b_n x^n/n], or, exp[P.(b_1,...,b_n)x] = exp[-], expressed umbrally with <"power series"> denoting umbral evaluation (b.)^n = b_n within the power series. This e.g.f. is central to the paper by Maxim and Schuermannn on characteristic classes (cf. Friedrich and McKay also). - Tom Copeland, Nov 11 2015
The elementary Schur polynomials are given by S(n,x(1),x(2),...,x(n)) = P(n,x(1), 2*x(2),...,n*x(n)) / n!. See p. 12 of Carrell. - Tom Copeland, Feb 06 2016
These partition polynomials are also related to the Casimir invariants associated to quantum density states on p. 3 of Boya and Dixit and pp. 5 and 6 of Byrd and Khaneja. - Tom Copeland, Jul 24 2017
With the indeterminates (x_1,x_2,x_3,...) = (t,-c_2*t,-c_3*t,...) with c_n >0, umbrally P(n,a.) = P(n,t)|{t^n = a_n} = 0 and P(j,a.)P(k,a.) = P(j,t)P(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A133932. - Tom Copeland, Feb 09 2018
For relation to the Witt symmetric functions, as well as the basic power, elementary, and complete symmetric functions, see the Borger link p. 295. For relations to diverse zeta functions, determinants, and paths on graphs, see the MathOverflow question Cycling Through the Zeta Garden. - Tom Copeland, Mar 25 2018
Chmutov et al. identify the partition polynomials of this entry with the one-part Schur polynomials and assert that any linear combination with constant coefficients of these polynomials is a tau function for the KP hierarchy. - Tom Copeland, Apr 05 2018
With the indeterminates in the partition polynomials assigned as generalized harmonic numbers, i.e., as partial sums of the Dirichlet series for the Riemann zeta function, zeta(n), for integer n > 1, sums of simple normalizations of these polynomials give either unity or simple sums of consecutive zeta(n) (cf. Hoffman). Other identities involving these polynomials can be found in the Choi reference in Hoffman's paper. - Tom Copeland, Oct 05 2019
On p. 39 of Ma Luo's thesis is the e.g.f. of rational functions r_n obtained through the (umbral) formula 1/(1-r.T) = exp[log(1+P.T)], a differently signed e.g.f. of this entry, where (P.)^n = P_n are Eisenstein elliptic functions. P. 38 gives the example of 4! * r_4 as the signed 4th row partition polynomial of this entry. This series is equated through a simple proportionality factor to the Zagier Jacobi form on p. 25. Recurrence relations for the P_n are given on p. 24 involving the normalized k-weight Eisenstein series G_k introduced on p. 23 and related to the Bernoulli numbers. - Tom Copeland, Oct 16 2019
The Chern characteristic classes or forms of complex vector bundles and the characteristic polynomials of curvature forms for a smooth manifold can be expressed in terms of this entry's partition polynomials with the associated traces, or power sum polynomials, as the indeterminates. The Chern character is the e.g.f. of these traces and so its coefficients are given by the Faber polynomials with this entry's partition polynomials as the indeterminates. See the Mathoverflow question "A canonical reference for Chern characteristic classes". - Tom Copeland, Nov 04 2019
For an application to the physics of charged fermions in an external field, see Figueroa et al. - Tom Copeland, Dec 05 2019
Konopelchenko, in Proposition 5.2, p. 19, defines an operator P_k that is a differently signed operator version of the partition polynomials of this entry divided by a factorial. These operators give rise to bilinear Hirota equations for the KP hierarchy. These partition polynomials are also presented in Hopf algebras of symmetric functions by Cartier. - Tom Copeland, Dec 18 2019
For relationship of these partition polynomials to calculations of Pontryagin classes and the Riemann xi function, see A231846. - Tom Copeland, May 27 2020
Luest and Skliros summarize on p. 298 many of the properties of the cycle index polynomials given here; and Bianchi and Firrotta, a few on p. 6. - Tom Copeland, Oct 15 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)

Examples

			The partition array T(n, k) begins (see the W. Lang link for rows 1..10):
  n\k   1    2    3    4    5    6    7    8    9   10   11  12   13  14 15 ...
  1:    1
  2:    1    1
  3:    2    3    1
  4:    6    8    3    6    1
  5:   24   30   20   20   15   10    1
  6:  120  144   90   40   90  120   15   40   45   15    1
  7:  720  840  504  420  504  630  280  210  210  420  105  70  105  21  1
... reformatted by _Wolfdieter Lang_, May 25 2019
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2".

Crossrefs

Cf. other versions based on different partition orderings: A102189 (rows reversed), A181897, A319192.
Cf. A133932.
Cf. A231846.
Cf. A127671.

Programs

  • Maple
    nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036039(n, m) := n!/ (mul((t)^q(t)*q(t)!, t=1..n)); od: od: seq(seq(A036039(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
    # 2nd program:
    A036039 := proc(n,k)
        local a,prts,e,ai ;
        a := n! ;
        # ASPrts is implemented in A119441
        prts := ASPrts(n)[k] ;
        ai := 1;
        for e from 1 to nops(prts) do
            if e>1 then
                if op(e,prts) = op(e-1,prts) then
                    ai := ai+1 ;
                else
                    ai := 1;
                end if;
            end if;
            a := a/(op(e,prts)*ai) ;
        end do:
        a ;
    end proc:
    seq(seq(A036039(n,k),k=1..combinat[numbpart](n)),n=1..15) ; # R. J. Mathar, Dec 18 2016
  • Mathematica
    aspartitions[n_]:=Reverse/@Sort[Sort/@IntegerPartitions[n]];(* Abramowitz & Stegun ordering *);
    ascycleclasses[n_Integer]:=n!/(Times@@ #)&/@((#!
    Range[n]^#)&/@Function[par,Count[par,# ]&/@Range[n]]/@aspartitions[n])
    (* The function "ascycleclasses" is then identical with A&S multinomial M2. *)
    Table[ascycleclasses[n], {n, 1, 8}] // Flatten
    (* Wouter Meeussen, Jun 26 2009, Jun 27 2009 *)
  • Sage
    def PartAS(n):
        P = []
        for k in (1..n):
            Q = [p.to_list() for p in Partitions(n, length=k)]
            for q in Q: q.reverse()
            P = P + sorted(Q)
        return P
    def A036039_row(n):
        fn, C = factorial(n), []
        for q in PartAS(n):
            q.reverse()
            p = Partition(q)
            fp = 1; pf = 1
            for a, c in p.to_exp_dict().items():
                fp *= factorial(c)
                pf *= factorial(a)**c
            co = fn//(fp*pf)
            C.append(co*prod([factorial(i-1) for i in p]))
        return C
    for n in (1..10):
        print(A036039_row(n)) # Peter Luschny, Dec 18 2016

Formula

T(n,k) = n!/Product_{j=1..n} j^a(n,k,j)*a(n,k,j)!, with the k-th partition of n >= 1 in Abromowitz-Stegun order written as Product_{j=1..n} j^a(n,k,j) with nonnegative integers a(n,k,j) satisfying Sum_{j=1..n} j*a(n,k,j) = n, and the number of parts is Sum_{j=1..n} a(n,k,j) =: m(n,k). - Wolfdieter Lang, May 25 2019
Raising and lowering operators are given for the partition polynomials formed from this sequence in the link in "Lagrange a la Lah Part I" on p. 23. - Tom Copeland, Sep 18 2011
From Szabo p. 34, with b_n = q^n / (1-q^n)^2, the partition polynomials give an expansion of the MacMahon function M(q) = Product_{n>=1} 1/(1-q^n)^n = Sum_{n>=0} PL(n) q^n, the generating function for PL(n) = n! P_n(b_1,...,b_n), the number of plane partitions with sum n. - Tom Copeland, Nov 11 2015
From Tom Copeland, Nov 18 2015: (Start)
The partition polynomials of A036040 are obtained by substituting x[n]/(n-1)! for x[n] in the partition polynomials of this entry.
CIP_n(t-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = P_n(b1,...,bn;t), where CIP_n are the partition polynomials of this entry; F(n,...), those of A263916; and P_n, those defined in my formula in A094587, e.g., P_2(b1,b2;t) = 2 b2 + 2 b1 t + t^2.
CIP_n(-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = n! bn. (End)
From the relation to the elementary Schur polynomials given in A130561 and above, the partition polynomials of this array satisfy (d/d(x_m)) P(n,x_1,...,x_n) = (1/m) * (n!/(n-m)!) * P(n-m,x_1,...,x_(n-m)) with P(k,...) = 0 for k<0. - Tom Copeland, Sep 07 2016
Regarded as Appell polynomials in the indeterminate x(1)=u, the partition polynomials of this entry P_n(u) obey d/du P_n(u) = n * P_{n-1}(u), so the abscissas for the zeros of P_n(u) are the same as those of the extrema of P{n+1}(u). In addition, the coefficient of u^{n-1} in P_{n}(u) is zero since these polynomials are related to the characteristic polynomials of matrices with null main diagonals, and, therefore, the trace is zero, further implying the abscissa for any zero is the negative of the sum of the abscissas of the remaining zeros. This assumes all zeros are distinct and real. - Tom Copeland, Nov 10 2019

Extensions

More terms from David W. Wilson
Title expanded by Tom Copeland, Oct 15 2020

A105278 Triangle read by rows: T(n,k) = binomial(n,k)*(n-1)!/(k-1)!.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 36, 12, 1, 120, 240, 120, 20, 1, 720, 1800, 1200, 300, 30, 1, 5040, 15120, 12600, 4200, 630, 42, 1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1, 3628800, 16329600
Offset: 1

Views

Author

Miklos Kristof, Apr 25 2005

Keywords

Comments

T(n,k) is the number of partially ordered sets (posets) on n elements that consist entirely of k chains. For example, T(4, 3)=12 since there are exactly 12 posets on {a,b,c,d} that consist entirely of 3 chains. Letting ab denote a<=b and using a slash "/" to separate chains, the 12 posets can be given by a/b/cd, a/b/dc, a/c/bd, a/c/db, a/d/bc, a/d/cb, b/c/ad, b/c/da, b/d/ac, b/d/ca, c/d/ab and c/d/ba, where the listing of the chains is arbitrary (e.g., a/b/cd = a/cd/b =...cd/b/a). - Dennis P. Walsh, Feb 22 2007
Also the matrix product |S1|.S2 of Stirling numbers of both kinds.
This Lah triangle is a lower triangular matrix of the Jabotinsky type. See the column e.g.f. and the D. E. Knuth reference given in A008297. - Wolfdieter Lang, Jun 29 2007
The infinitesimal matrix generator of this matrix is given in A132710. See A111596 for an interpretation in terms of circular binary words and generalized factorials. - Tom Copeland, Nov 22 2007
Three combinatorial interpretations: T(n,k) is (1) the number of ways to split [n] = {1,...,n} into a collection of k nonempty lists ("partitions into sets of lists"), (2) the number of ways to split [n] into an ordered collection of n+1-k nonempty sets that are noncrossing ("partitions into lists of noncrossing sets"), (3) the number of Dyck n-paths with n+1-k peaks labeled 1,2,...,n+1-k in some order. - David Callan, Jul 25 2008
Given matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = D where D(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - Tom Copeland, Aug 21 2008
An e.g.f. for the row polynomials of A(n,k) = T(n,k)*a(n-k) is exp[a(.)* D_x * x^2] exp(x*t) = exp(x*t) exp[(.)!*Lag(.,-x*t,1)*a(.)*x], umbrally, where [(.)! Lag(.,x,1)]^n = n! Lag(n,x,1) is a normalized Laguerre polynomial of order 1. - Tom Copeland, Aug 29 2008
Triangle of coefficients from the Bell polynomial of the second kind for f = 1/(1-x). B(n,k){x1,x2,x3,...} = B(n,k){1/(1-x)^2,...,(j-1)!/(1-x)^j,...} = T(n,k)/(1-x)^(n+k). - Vladimir Kruchinin, Mar 04 2011
The triangle, with the row and column offset taken as 0, is the generalized Riordan array (exp(x), x) with respect to the sequence n!*(n+1)! as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!^2 is A021009 unsigned). - Peter Bala, Aug 15 2013
For a relation to loop integrals in QCD, see p. 33 of Gopakumar and Gross and Blaizot and Nowak. - Tom Copeland, Jan 18 2016
Also the Bell transform of (n+1)!. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Also the number of k-dimensional flats of the n-dimensional Shi arrangement. - Shuhei Tsujie, Apr 26 2019
The numbers T(n,k) appear as coefficients when expanding the rising factorials (x)^k = x(x+1)...(x+k-1) in the basis of falling factorials (x)k = x(x-1)...(x-k+1). Specifically, (x)^n = Sum{k=1..n} T(n,k) (x)k. - _Jeremy L. Martin, Apr 21 2021

Examples

			T(1,1) = C(1,1)*0!/0! = 1,
T(2,1) = C(2,1)*1!/0! = 2,
T(2,2) = C(2,2)*1!/1! = 1,
T(3,1) = C(3,1)*2!/0! = 6,
T(3,2) = C(3,2)*2!/1! = 6,
T(3,3) = C(3,3)*2!/2! = 1,
Sheffer a-sequence recurrence: T(6,2)= 1800 = (6/3)*120 + 6*240.
B(n,k) =
   1/(1-x)^2;
   2/(1-x)^3,  1/(1-x)^4;
   6/(1-x)^4,  6/(1-x)^5,  1/(1-x)^6;
  24/(1-x)^5, 36/(1-x)^6, 12/(1-x)^7, 1/(1-x)^8;
The triangle T(n,k) begins:
  n\k      1       2       3      4      5     6    7  8  9 ...
  1:       1
  2:       2       1
  3:       6       6       1
  4:      24      36      12      1
  5:     120     240     120     20      1
  6:     720    1800    1200    300     30     1
  7:    5040   15120   12600   4200    630    42    1
  8:   40320  141120  141120  58800  11760  1176   56  1
  9:  362880 1451520 1693440 846720 211680 28224 2016 72  1
  ...
Row n=10: [3628800, 16329600, 21772800, 12700800, 3810240, 635040, 60480, 3240, 90, 1]. - _Wolfdieter Lang_, Feb 01 2013
From _Peter Bala_, Feb 24 2025: (Start)
The array factorizes as an infinite product (read from right to left):
  /  1                \        /1             \^m /1           \^m /1           \^m
  |  2    1            |      | 0   1          |  |0  1         |  |1  1         |
  |  6    6   1        | = ...| 0   0   1      |  |0  1  1      |  |0  2  1      |
  | 24   36  12   1    |      | 0   0   1  1   |  |0  0  2  1   |  |0  0  3  1   |
  |120  240 120  20   1|      | 0   0   0  2  1|  |0  0  0  3  1|  |0  0  0  4  1|
  |...                 |      |...             |  |...          |  |...          |
where m = 2. Cf. A008277 (m = 1), A035342 (m = 3), A035469 (m = 4), A049029 (m = 5) A049385 (m = 6), A092082 (m = 7), A132056 (m = 8), A223511 - A223522 (m = 9 through 20), A001497 (m = -1), A004747 (m = -2), A000369 (m = -3), A011801 (m = -4), A013988 (m = -5). (End)
		

Crossrefs

Triangle of Lah numbers (A008297) unsigned.
Cf. A111596 (signed triangle with extra n=0 row and m=0 column).
Cf. A130561 (for a natural refinement).
Cf. A094638 (for differential operator representation).
Cf. A248045 (central terms), A002868 (row maxima).
Cf, A059110.
Cf. A089231 (triangle with mirrored rows).
Cf. A271703 (triangle with extra n=0 row and m=0 column).

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Binomial(n,k)*Factorial(n-1)/Factorial(k-1)))); # Muniru A Asiru, Jul 25 2018
  • Haskell
    a105278 n k = a105278_tabl !! (n-1) !! (k-1)
    a105278_row n = a105278_tabl !! (n-1)
    a105278_tabl = [1] : f [1] 2 where
       f xs i = ys : f ys (i + 1) where
         ys = zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Sep 30 2014, Mar 18 2013
    
  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(n-1)/Factorial(k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    The triangle: for n from 1 to 13 do seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n) od;
    the sequence: seq(seq(binomial(n,k)*(n-1)!/(k-1)!,k=1..n),n=1..13);
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ...) as column 0.
    BellMatrix(n -> (n+1)!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    nn = 9; a = x/(1 - x); f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 11 2011 *)
    nn = 9; Flatten[Table[(j - k)! Binomial[j, k] Binomial[j - 1, k - 1], {j, nn}, {k, j}]] (* Jan Mangaldan, Mar 15 2013 *)
    rows = 10;
    t = Range[rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    T[n_, n_] := 1; T[n_, k_] /;0Oliver Seipel, Dec 06 2024 *)
  • Perl
    use ntheory ":all"; say join ", ", map { my $n=$; map { stirling($n,$,3) } 1..$n; } 1..9; # Dana Jacobsen, Mar 16 2017
    

Formula

T(n,k) = Sum_{m=n..k} |S1(n,m)|*S2(m,k), k>=n>=1, with Stirling triangles S2(n,m):=A048993 and S1(n,m):=A048994.
T(n,k) = C(n,k)*(n-1)!/(k-1)!.
Sum_{k=1..n} T(n,k) = A000262(n).
n*Sum_{k=1..n} T(n,k) = A103194(n) = Sum_{k=1..n} T(n,k)*k^2.
E.g.f. column k: (x^(k-1)/(1-x)^(k+1))/(k-1)!, k>=1.
Recurrence from Sheffer (here Jabotinsky) a-sequence [1,1,0,...] (see the W. Lang link under A006232): T(n,k)=(n/k)*T(n-1,m-1) + n*T(n-1,m). - Wolfdieter Lang, Jun 29 2007
The e.g.f. is, umbrally, exp[(.)!* L(.,-t,1)*x] = exp[t*x/(1-x)]/(1-x)^2 where L(n,t,1) = Sum_{k=0..n} T(n+1,k+1)*(-t)^k = Sum_{k=0..n} binomial(n+1,k+1)* (-t)^k / k! is the associated Laguerre polynomial of order 1. - Tom Copeland, Nov 17 2007
For this Lah triangle, the n-th row polynomial is given umbrally by
n! C(B.(x)+1+n,n) = (-1)^n C(-B.(x)-2,n), where C(x,n)=x!/(n!(x-n)!),
the binomial coefficient, and B_n(x)= exp(-x)(xd/dx)^n exp(x), the n-th Bell / Touchard / exponential polynomial (cf. A008277). E.g.,
2! C(-B.(-x)-2,2) = (-B.(x)-2)(-B.(x)-3) = B_2(x) + 5*B_1(x) + 6 = 6 + 6x + x^2.
n! C(B.(x)+1+n,n) = n! e^(-x) Sum_{j>=0} C(j+1+n,n)x^j/j! is a corresponding Dobinski relation. See the Copeland link for the relation to inverse Mellin transform. - Tom Copeland, Nov 21 2011
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A008277 (D = (1+x)*d/dx), A035342 (D = (1+x)^3*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). - Peter Bala, Nov 25 2011
T(n,k) = Sum_{i=k..n} A130534(n-1,i-1)*A008277(i,k). - Reinhard Zumkeller, Mar 18 2013
Let E(x) = Sum_{n >= 0} x^n/(n!*(n+1)!). Then a generating function is exp(t)*E(x*t) = 1 + (2 + x)*t + (6 + 6*x + x^2)*t^2/(2!*3!) + (24 + 36*x + 12*x^2 + x^3)*t^3/(3!*4!) + ... . - Peter Bala, Aug 15 2013
P_n(x) = L_n(1+x) = n!*Lag_n(-(1+x);1), where P_n(x) are the row polynomials of A059110; L_n(x), the Lah polynomials of A105278; and Lag_n(x;1), the Laguerre polynomials of order 1. These relations follow from the relation between the iterated operator (x^2 D)^n and ((1+x)^2 D)^n with D = d/dx. - Tom Copeland, Jul 23 2018
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates the Narayana matrix A001263. - Tom Copeland, Sep 23 2020
T(n,k) = A089231(n,n-k). - Ron L.J. van den Burg, Dec 12 2021
T(n,k) = T(n-1,k-1) + (n+k-1)*T(n-1,k). - Bérénice Delcroix-Oger, Jun 25 2025

Extensions

Stirling comments and e.g.f.s from Wolfdieter Lang, Apr 11 2007

A111596 The matrix inverse of the unsigned Lah numbers A271703.

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 6, -6, 1, 0, -24, 36, -12, 1, 0, 120, -240, 120, -20, 1, 0, -720, 1800, -1200, 300, -30, 1, 0, 5040, -15120, 12600, -4200, 630, -42, 1, 0, -40320, 141120, -141120, 58800, -11760, 1176, -56, 1, 0, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016, -72, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Also the associated Sheffer triangle to Sheffer triangle A111595.
Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-1,x), which equals (-1)^n * Lag(n,x,-1) below. Lag(n,Lag(.,x,-1),-1) = x^n evaluated umbrally, i.e., with (Lag(.,x,-1))^k = Lag(k,x,-1). - Tom Copeland, Apr 26 2014
Without row n=0 and column m=0 this is, up to signs, the Lah triangle A008297.
The unsigned column sequences are (with leading zeros): A000142, A001286, A001754, A001755, A001777, A001778, A111597-A111600 for m=1..10.
The row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m, together with the row polynomials s(n,x) of A111595 satisfy the exponential (or binomial) convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), n>=0.
Exponential Riordan array [1,x/(1+x)]. Inverse of the exponential Riordan array [1,x/(1-x)], which is the unsigned version of A111596. - Paul Barry, Apr 12 2007
For the unsigned subtriangle without column number m=0 and row number n=0, see A105278.
Unsigned triangle also matrix product |S1|*S2 of Stirling number matrices.
The unsigned row polynomials are Lag(n,-x,-1), the associated Laguerre polynomials of order -1 with negated argument. See Gradshteyn and Ryzhik, Abramowitz and Stegun and Rota (Finite Operator Calculus) for extensive formulas. - Tom Copeland, Nov 17 2007, Sep 09 2008
An infinitesimal matrix generator for unsigned A111596 is given by A132792. - Tom Copeland, Nov 22 2007
From the formalism of A132792 and A133314 for n > k, unsigned A111596(n,k) = a(k) * a(k+1)...a(n-1) / (n-k)! = a generalized factorial, where a(n) = A002378(n) = n-th term of first subdiagonal of unsigned A111596. Hence Deutsch's remark in A002378 provides an interpretation of A111596(n,k) in terms of combinations of certain circular binary words. - Tom Copeland, Nov 22 2007
Given T(n,k)= A111596(n,k) and matrices A and B with A(n,k) = T(n,k)*a(n-k) and B(n,k) = T(n,k)*b(n-k), then A*B = C where C(n,k) = T(n,k)*[a(.)+b(.)]^(n-k), umbrally. - Tom Copeland, Aug 27 2008
Operationally, the unsigned row polynomials may be expressed as p_n(:xD:) = x*:Dx:^n*x^{-1}=x*D^nx^n*x^{-1}= n!*binomial(xD+n-1,n) = (-1)^n n! binomial(-xD,n) = n!L(n,-1,-:xD:), where, by definition, :AB:^n = A^nB^n for any two operators A and B, D = d/dx, and L(n,-1,x) is the Laguerre polynomial of order -1. A similarity transformation of the operators :Dx:^n generates the higher order Laguerre polynomials, which can also be expressed in terms of rising or falling factorials or Kummer's confluent hypergeometric functions (cf. the Mathoverflow post). - Tom Copeland, Sep 21 2019

Examples

			Binomial convolution of row polynomials: p(3,x) = 6*x-6*x^2+x^3; p(2,x) = -2*x+x^2, p(1,x) = x, p(0,x) = 1,
together with those from A111595: s(3,x) = 9*x-6*x^2+x^3; s(2,x) = 1-2*x+x^2, s(1,x) = x, s(0,x) = 1; therefore
9*(x+y)-6*(x+y)^2+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = (6*y-6*y^2+y^3) + 3*x*(-2*y+y^2) + 3*(1-2*x+x^2)*y + 9*x-6*x^2+x^3.
From _Wolfdieter Lang_, Apr 28 2014: (Start)
The triangle a(n,m) begins:
n\m  0     1       2       3      4     5   6  7
0:   1
1:   0     1
2:   0    -2       1
3:   0     6      -6       1
4:   0   -24      36     -12      1
5:   0   120    -240     120    -20     1
6:   0  -720    1800   -1200    300   -30   1
7:   0  5040  -15120   12600  -4200   630 -42  1
...
For more rows see the link.
(End)
		

Crossrefs

Row sums: A111884. Unsigned row sums: A000262.
A002868 gives maximal element (in magnitude) in each row.
Cf. A130561 for a natural refinement.
Cf. A264428, A264429, A271703 (unsigned).
Cf. A008297, A089231, A105278 (variants).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n::odd, -(n+1)!, (n+1)!), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    a[0, 0] = 1; a[n_, m_] := ((-1)^(n-m))*(n!/m!)*Binomial[n-1, m-1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
    T[ n_, k_] := (-1)^n n! Coefficient[ LaguerreL[ n, -1, x], x, k]; (* Michael Somos, Dec 15 2014 *)
    rows = 9;
    t = Table[(-1)^(n+1) n!, {n, 1, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}]  // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    {T(n, k) = if( n<1 || k<1, n==0 && k==0, (-1)^n * n! * polcoeff( sum(k=1, n, binomial( n-1, k-1) * (-x)^k / k!), k))}; /* Michael Somos, Dec 15 2014 */
  • Sage
    lah_number = lambda n, k: factorial(n-k)*binomial(n,n-k)*binomial(n-1,n-k)
    A111596_row = lambda n: [(-1)^(n-k)*lah_number(n, k) for k in (0..n)]
    for n in range(10): print(A111596_row(n)) # Peter Luschny, Oct 05 2014
    
  • Sage
    # uses[inverse_bell_transform from A264429]
    def A111596_matrix(dim):
        fact = [factorial(n) for n in (1..dim)]
        return inverse_bell_transform(dim, fact)
    A111596_matrix(10) # Peter Luschny, Dec 20 2015
    

Formula

E.g.f. m-th column: ((x/(1+x))^m)/m!, m>=0.
E.g.f. for row polynomials p(n, x) is exp(x*y/(1+y)).
a(n, m) = ((-1)^(n-m))*|A008297(n, m)| = ((-1)^(n-m))*(n!/m!)*binomial(n-1, m-1), n>=m>=1; a(0, 0)=1; else 0.
a(n, m) = -(n-1+m)*a(n-1, m) + a(n-1, m-1), n>=m>=0, a(n, -1):=0, a(0, 0)=1; a(n, m)=0 if n
|a(n,m)| = Sum_{k=m..n} |S1(n,k)|*S2(k,m), n>=0. S2(n,m):=A048993. S1(n,m):=A048994. - Wolfdieter Lang, May 04 2007
From Tom Copeland, Nov 21 2011: (Start)
For this Lah triangle, the n-th row polynomial is given umbrally by
(-1)^n n! binomial(-Bell.(-x),n), where Bell_n(-x)= exp(x)(xd/dx)^n exp(-x), the n-th Bell / Touchard / exponential polynomial with neg. arg., (cf. A008277). E.g., 2! binomial(-Bell.(-x),2) = -Bell.(-x)*(-Bell.(-x)-1) = Bell_2(-x)+Bell_1(-x) = -2x+x^2.
A Dobinski relation is (-1)^n n! binomial(-Bell.(-x),n)= (-1)^n n! e^x Sum_{j>=0} (-1)^j binomial(-j,n)x^j/j!= n! e^x Sum_{j>=0} (-1)^j binomial(j-1+n,n)x^j/j!. See the Copeland link for the relation to inverse Mellin transform. (End)
The n-th row polynomial is (-1/x)^n e^x (x^2*D_x)^n e^(-x). - Tom Copeland, Oct 29 2012
Let f(.,x)^n = f(n,x) = x!/(x-n)!, the falling factorial,and r(.,x)^n = r(n,x) = (x-1+n)!/(x-1)!, the rising factorial, then the Lah polynomials, Lah(n,t)= n!*Sum{k=1..n} binomial(n-1,k-1)(-t)^k/k! (extra sign factor on odd rows), give the transform Lah(n,-f(.,x))= r(n,x), and Lah(n,r(.,x))= (-1)^n * f(n,x). - Tom Copeland, Oct 04 2014
|T(n,k)| = Sum_{j=0..2*(n-k)} A254881(n-k,j)*k^j/(n-k)!. Note that A254883 is constructed analogously from A254882. - Peter Luschny, Feb 10 2015
The T(n,k) are the inverse Bell transform of [1!,2!,3!,...] and |T(n,k)| are the Bell transform of [1!,2!,3!,...]. See A264428 for the definition of the Bell transform and A264429 for the definition of the inverse Bell transform. - Peter Luschny, Dec 20 2015
Dividing each n-th diagonal by n!, where the main diagonal is n=1, generates a shifted, signed Narayana matrix A001263. - Tom Copeland, Sep 23 2020

Extensions

New name using a comment from Wolfdieter Lang by Peter Luschny, May 10 2021

A263916 Coefficients of the Faber partition polynomials.

Original entry on oeis.org

-1, -2, 1, -3, 3, -1, -4, 4, 2, -4, 1, -5, 5, 5, -5, -5, 5, -1, -6, 6, 6, -6, 3, -12, 6, -2, 9, -6, 1, -7, 7, 7, -7, 7, -14, 7, -7, -7, 21, -7, 7, -14, 7, -1, -8, 8, 8, -8, 8, -16, 8, 4, -16, -8, 24, -8, -8, 12, 24, -32, 8, 2, -16, 20, -8, 1
Offset: 1

Author

Tom Copeland, Oct 29 2015

Keywords

Comments

The coefficients of the Faber polynomials F(n,b(1),b(2),...,b(n)) (Bouali, p. 52) in the order of the partitions of Abramowitz and Stegun. Compare with A115131 and A210258.
These polynomials occur in discussions of the Virasoro algebra, univalent function spaces and the Schwarzian derivative, symmetric functions, and free probability theory. They are intimately related to symmetric functions, free probability, and Appell sequences through the raising operator R = x - d log(H(D))/dD for the Appell sequence inverse pair associated to the e.g.f.s H(t)e^(xt) (cf. A094587) and (1/H(t))e^(xt) with H(0)=1.
Instances of the Faber polynomials occur in discussions of modular invariants and modular functions in the papers by Asai, Kaneko, and Ninomiya, by Ono and Rolen, and by Zagier. - Tom Copeland, Aug 13 2019
The Faber polynomials, denoted by s_n(a(t)) where a(t) is a formal power series defined by a product formula, are implicitly defined by equation 13.4 on p. 62 of Hazewinkel so as to extract the power sums of the reciprocals of the zeros of a(t). This is the Newton identity expressing the power sum symmetric polynomials in terms of the elementary symmetric polynomials/functions. - Tom Copeland, Jun 06 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)

Examples

			F(1,b1) = - b1
F(2,b1,b2) = -2 b2 + b1^2
F(3,b1,b2,b3) = -3 b3 + 3 b1 b2 - b1^3
F(4,b1,...) = -4 b4 + 4 b1 b3 + 2 b2^2  - 4 b1^2 b2 + b1^4
F(5,...) = -5 b5 + 5 b1 b4 + 5 b2 b3 - 5 b1^2 b3 - 5 b1 b2^2 + 5 b1^3 b2 - b1^5
------------------------------
IF(1,b1) = -b1
IF(2,b1,,b2) = -b2 + b1^2
IF(3,b1,b2,b3) = -2 b3 + 3 b1 b2 - b1^3
IF(4,b1,...) = -6 b4 + 8 b1 b3 + 3 b2^2  - 6 b1^2 b2 + b1^4
IF(5,...) = -24 b5 + 30 b1 b4 + 20 b2 b3 - 20 b1^2 b3 - 15 b1 b2^2 + 10 b1^3 b2 - b1^5
------------------------------
For 1/(1+x)^2 = 1- 2x + 3x^2 - 4x^3 + 5x^4 - ..., F(n,-2,3,-4,...) = (-1)^(n+1) 2.
------------------------------
F(n,x,2x,...,nx), F(n,-x,2x,-3x,...,(-1)^n n*x), and F(n,(2-x),1,0,0,...) are related to the Chebyshev polynomials through A127677 and A111125. See also A110162, A156308, A208513, A217476, and A220668.
------------------------------
For b1 = p, b2 = q, and all other indeterminates 0, see A113279 and A034807.
For b1 = -y, b2 = 1 and all other indeterminates 0, see A127672.
		

References

  • H. Airault, "Symmetric sums associated to the factorization of Grunsky coefficients," in Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes: Vol. 47, edited by J. Harnad and P. Winternitz, American Mathematical Society, 2009.
  • D. Bleeker and B. Booss, Index Theory with Applications to Mathematics and Physics, International Press, 2013, (see section 16.7 Characteristic Classes and Curvature).
  • M. Hazewinkel, Formal Groups and Applications, Academic Press, New York San Francisco London, 1978, p. 120.
  • F. Hirzebruch, Topological methods in algebraic geometry. Second, corrected printing of the third edition. Die Grundlehren der Mathematischen Wissenschaften, Band 131 Springer-Verlag, Berlin Heidelberg New York, 1978, p. 11 and 92.
  • D. Knutson, λ-Rings and the Representation Theory of the Symmetric Group, Lect. Notes in Math. 308, Springer-Verlag, 1973, p. 35.
  • D. Yau, Lambda-Rings, World Scientific Publishing Co., Singapore, 2010, p. 45.

Crossrefs

Programs

  • Mathematica
    F[0] = 1; F[1] = -b[1]; F[2] = b[1]^2 - 2 b[2]; F[n_] := F[n] = -b[1] F[n - 1] - Sum[b[n - k] F[k], {k, 1, n - 2}] - n b[n] // Expand;
    row[n_] := (List @@ F[n]) /. b[_] -> 1 // Reverse;
    Table[row[n], {n, 1, 8}] // Flatten // Rest (* Jean-François Alcover, Jun 12 2017 *)

Formula

-log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n.
-d(1 + b(1) x + b(2) x^2 + ...)/dx / (1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) x^(n-1).
F(n,b(1),...,b(n)) = -n*b(n) - Sum_{k=1..n-1} b(n-k)*F(k,b(1),...,b(k)).
Umbrally, with B(x) = 1 + b(1) x + b(2) x^2 + ..., B(x) = exp[log(1-F.x)] and 1/B(x) = exp[-log(1-F.x)], establishing a connection to the e.g.f. of A036039 and the symmetric polynomials.
The Stirling partition polynomials of the first kind St1(n,b1,b2,...,bn;-1) = IF(n,b1,b2,...,bn) (cf. the Copeland link Lagrange a la Lah, signed A036039, and p. 184 of Airault and Bouali), i.e., the cyclic partition polynomials for the symmetric groups, and the Faber polynomials form an inverse pair for isolating the indeterminates in their definition, for example, F(3,IF(1,b1),IF(2,b1,b2)/2!,IF(3,b1,b2,b3)/3!)= b3, with bk = b(k), and IF(3,F(1,b1),F(2,b1,b2),F(3,b1,b2,b3))/3!= b3.
The polynomials specialize to F(n,t,t,...) = (1-t)^n - 1.
See Newton Identities on Wikipedia on relation between the power sum symmetric polynomials and the complete homogeneous and elementary symmetric polynomials for an expression in multinomials for the coefficients of the Faber polynomials.
(n-1)! F(n,x[1],x[2]/2!,...,x[n]/n!) = - p_n(x[1],...,x[n]), where p_n are the cumulants of A127671 expressed in terms of the moments x[n]. - Tom Copeland, Nov 17 2015
-(n-1)! F(n,B(1,x[1]),B(2,x[1],x[2])/2!,...,B(n,x[1],...,x[n])/n!) = x[n] provides an extraction of the indeterminates of the complete Bell partition polynomials B(n,x[1],...,x[n]) of A036040. Conversely, IF(n,-x[1],-x[2],-x[3]/2!,...,-x[n]/(n-1)!) = B(n,x[1],...,x[n]). - Tom Copeland, Nov 29 2015
For a square matrix M, determinant(I - x M) = exp[-Sum_{k>0} (trace(M^k) x^k / k)] = Sum_{n>0} [ P_n(-trace(M),-trace(M^2),...,-trace(M^n)) x^n/n! ] = 1 + Sum_{n>0} (d[n] x^n), where P_n(x[1],...,x[n]) are the cycle index partition polynomials of A036039 and d[n] = P_n(-trace(M),-trace(M^2),...,-trace(M^n)) / n!. Umbrally, det(I - x M)= exp[log(1 - b. x)] = exp[P.(-b_1,..,-b_n)x] = 1 / (1-d.x), where b_k = tr(M^k). Then F(n,d[1],...,d[n]) = tr[M^n]. - Tom Copeland, Dec 04 2015
Given f(x) = -log(g(x)) = -log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n, action on u_n = F(n,b(1),...,b(n)) with A133932 gives the compositional inverse finv(x) of f(x), with F(1,b(1)) not equal to zero, and f(g(finv(x))) = f(e^(-x)). Note also that exp(f(x)) = 1 / g(x) = exp[Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n] implies relations among A036040, A133314, A036039, and the Faber polynomials. - Tom Copeland, Dec 16 2015
The Dress and Siebeneicher paper gives combinatorial interpretations and various relations that the Faber polynomials must satisfy for integral values of its arguments. E.g., Eqn. (1.2) p. 2 implies [2 * F(1,-1) + F(2,-1,b2) + F(4,-1,b2,b3,b4)] mod(4) = 0. This equation implies that [F(n,b1,b2,...,bn)-(-b1)^n] mod(n) = 0 for n prime. - Tom Copeland, Feb 01 2016
With the elementary Schur polynomials S(n,a_1,a_2,...,a_n) = Lah(n,a_1,a_2,...,a_n) / n!, where Lah(n,...) are the refined Lah polynomials of A130561, F(n,S(1,a_1),S(2,a_1,a_2),...,S(n,a_1,...,a_n)) = -n * a_n since sum_{n > 0} a_n x^n = log[sum{n >= 0} S(n,a_1,...,a_n) x^n]. Conversely, S(n,-F(1,a_1),-F(2,a_1,a_2)/2,...,-F(n,a_1,...,a_n)/n) = a_n. - Tom Copeland, Sep 07 2016
See Corollary 3.1.3 on p. 38 of Ardila and Copeland's two MathOverflow links to relate the Faber polynomials, with arguments being the signed elementary symmetric polynomials, to the logarithm of determinants, traces of powers of an adjacency matrix, and number of walks on graphs. - Tom Copeland, Jan 02 2017
The umbral inverse polynomials IF appear on p. 19 of Konopelchenko as partial differential operators. - Tom Copeland, Nov 19 2018

Extensions

More terms from Jean-François Alcover, Jun 12 2017

A133437 Irregular triangle of coefficients of a partition transform for direct Lagrange inversion of an o.g.f., complementary to A134685 for an e.g.f.; normalized by the factorials, these are signed, refined face polynomials of the associahedra.

Original entry on oeis.org

1, -2, 12, -6, -120, 120, -24, 1680, -2520, 360, 720, -120, -30240, 60480, -20160, -20160, 5040, 5040, -720, 665280, -1663200, 907200, 604800, -60480, -362880, -181440, 20160, 40320, 40320, -5040, -17297280, 51891840, -39916800, -19958400, 6652800, 19958400, 6652800, -1814400, -1814400, -3628800, -1814400, 362880, 362880, 362880, -40320
Offset: 1

Author

Tom Copeland, Jan 27 2008

Keywords

Comments

Let f(t) = u(t) - u(0) = Sum_{n>=1} u_n * t^n.
If u_1 is not equal to 0, then the compositional inverse for f(t) is given by g(t) = Sum_{j>=1} P(n,t) where, with u_n denoted by (n'),
P(1,t) = (1')^(-1) * [ 1 ] * t
P(2,t) = (1')^(-3) * [ -2 (2') ] * t^2 / 2!
P(3,t) = (1')^(-5) * [ 12 (2')^2 - 6 (1')(3') ] * t^3 / 3!
P(4,t) = (1')^(-7) * [ -120 (2')^3 + 120 (1')(2')(3') - 24 (1')^2 (4') ] * t^4 / 4!
P(5,t) = (1')^(-9) * [ 1680 (2')^4 - 2520 (1') (2')^2 (3') + 360 (1')^2 (3')^2 + 720 (1')^2 (2') (4') - 120 (1')^3 (5') ] * t^5 / 5!
P(6,t) = (1')^(-11) * [ -30240 (2')^5 + 60480 (1') (2')^3 (3') - 20160 (1')^2 (2') (3')^2 - 20160 (1')^2 (2')^2 (4') + 5040 (1')^3 (3')(4') + 5040 (1')^3 (2')(5') - 720 (1')^4 (6') ] * t^6 / 6!
P(7,t) = (1')^(-13) * [ 665280 (2')^6 - 1663200 (1')(2')^4(3') + (1')^2 [907200 (2')^2(3')^2 + 604800 (2')^3(4')] - (1')^3 [60480 (3')^3 + 362880 (2')(3')(4') + 181440 (2')^2(5')] + (1')^4 [20160 (4')^2 + 40320 (3')(5') + 40320 (2')(6')] - 5040 (1')^5(7')] * t^7 / 7!
P(8,t) = (1')^(-15) * [ -17297280 (2')^7 + 51891840 (1')(2')^5(3') - (1')^2 [39916800 (2')^3(3')^2 + 19958400 (2')^4(4')] + (1')^3 [6652800 (2')(3')^3 + 19958400 (2')^2(3')(4') + 6652800 (2')^3(5')] - (1')^4 [1814400 (3')^2(4') + 1814400 (2')(4')^2 + 3628800 (2')(3')(5') + 1814400 (2')^2(6')] + (1')^5 [362880 (4')(5') + 362880 (3')(6') + 362880 (2')(7')] - 40320 (1')^6(8')] * t^8 / 8!
...
See A134685 for more information.
A111785 is obtained from A133437 by dividing through the bracketed terms of the P(n,t) by n! and unsigned A111785 is a refinement of A033282 and A126216. - Tom Copeland, Sep 28 2008
For relation to the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see the Loday and McCammond links. E.g., P(5,t) = (1')^(-9) * [ 14 (2')^4 - 21 (1') (2')^2 (3') + 6 (1')^2 (2') (4')+ 3 (1')^2 (3')^2 - 1 (1')^3 (5') ] * t^5 is related to the 3-D associahedron with 14 vertices (0-D faces), 21 edges (1-D faces), 6 pentagons (2-D faces), 3 rectangles (2-D faces), 1 3-D polytope (3-D faces). Summing over faces of the same dimension gives A033282 or A126216. - Tom Copeland, Sep 29 2008
A relation between this Lagrange inversion for an o.g.f. and partition polynomials formed from the "refined Lah numbers" A130561 is presented in the link "Lagrange a la Lah" along with umbral binary tree representations.
With f(x,t) = x + t*Sum_{n>=2} u_n*x^n, the compositional inverse in x is related to the velocity profile of particles governed by the inviscid Burgers's, or Hopf, eqn. See A001764 and A086810. - Tom Copeland, Feb 15 2014
Newton was aware of this power series expansion for series reversion. See the Ferraro reference p. 75 eqn. 52. - Tom Copeland, Jan 22 2017
The coefficients of the partition polynomials divided by the associated factorial enumerate the faces of the convex, bounded polytopes called the associahedra, and the absolute value of the sum of the renormalized coefficients gives the Euler characteristic of unity for each polytope; i.e., the absolute value of the sum of each row of the array is either n! (unnormalized) or unity (normalized). In addition, the signs of the faces alternate with dimension, and the coefficients of faces with the same dimension for each polytope have the same sign. - Tom Copeland, Nov 13 2019
With u_1 = 1 and the other u_n replaced by suitably signed partition polynomials of A263633, the partition polynomials enumerating the refined noncrossing partitions of A134264 with a shift in indices are obtained (cf. In the Realm of Shadows). - Tom Copeland, Nov 16 2019
Relations between associahedra and oriented n-simplices are presented by Halvorson and by Street. - Tom Copeland, Dec 08 2019
Let f(x;t,n) = x - t * x^(n+1), giving u_1 = (1') = 1 and u_(n+1) = (n+1) = -t. Then inverting in x with t a parameter gives finv(x;t,n) = Sum_{j>=0} {binomial((n+1)*j,j) / (n*j + 1)} * t^j * x^(n*j + 1), which gives the Catalan numbers for n=1, and the Fuss-Catalan sequences for n>1 (see A001764, n=2). Comparing this with the same result in A134264 gives relations between the faces of associahedra and noncrossing partitions (and other combinatorial constructs related to these inversion formulas and those listed in A145271). - Tom Copeland, Jan 27 2020
From Tom Copeland, Mar 24 2020: (Start)
There is a mapping between the faces of K_n, the associahedron of dimension (n-1), and polygon dissections. The dissecting noncrossing diagonals (i.e., nonintersecting in the interior) form subpolygons. Assign the indeterminate x_k to a subpolygon where k = (number of vertices of the subpolygon) - 1. Multiply the x_k together to form the monomials for the inversion formula.
For the 3-dimensional associahedron K_4, the fundamental polygon is the hexagon, which can be dissected into pentagons, associated to x_4; tetragons, to x_3; and triangles, to x_2; for example, there are six distinguished partitions of the hexagon into one triangle and one pentagon, sharing two vertices, associated to the monomial 6 * x_2 * x_4 since the unshared vertex of the triangle can be moved consecutively from one vertex of the hexagon to the next. This term corresponds to 720 (1')^2 (2') (4') / 5! in P(5,t) above, denumerating the six pentagonal facets of K_4. (End)

References

  • G. Ferraro, The Rise and Development of the Theory of Series up to the Early 1820s, Springer Science and Business Media, 2007.
  • H. Halvorson (editor), Deep Beauty: Understanding the Quantum World Through Innovation, Cambridge Univ. Press, 2011.
  • H. Turnbull (editor), The Correspondence of Isaac Newton Vol. II 1676-1687, Cambridge Univ. Press, 1960, p. 147.

Crossrefs

Cf. A145271, (A086810, A181289) = (reduced array, associated g(x)).

Programs

  • Mathematica
    rows[nn_] := {{1}}~Join~With[{s = InverseSeries[t (1 + Sum[u[k] t^k, {k, nn}] + O[t]^(nn+1))]}, Table[(n+1)! Coefficient[s, t^(n+1) Product[u[w], {w, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n]]]}]];
    rows[7] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)

Formula

The bracketed partitions of P(n,t) are of the form (u_1)^e(1) (u_2)^e(2) ... (u_n)^e(n) with coefficients given by (-1)^(n-1+e(1)) * [2*(n-1)-e(1)]! / [ (e(2))! * (e(3))! * ... * (e(n))! ].
From Tom Copeland, Sep 06 2011: (Start)
Let h(t) = 1/(df(t)/dt)
= 1/Ev[u./(1-u.t)^2]
= 1/((u_1) + 2*(u_2)*t + 3*(u_3)*t^2 + 4*(u_4)*t^3 + ...),
where Ev denotes umbral evaluation.
Then for the partition polynomials of A133437,
n!*P(n,t) = ((t*h(y)*d/dy)^n) y evaluated at y=0,
and the compositional inverse of f(t) is
g(t) = exp(t*h(y)*d/dy) y evaluated at y=0.
Also, dg(t)/dt = h(g(t)). (End)
From Tom Copeland, Oct 20 2011: (Start)
With exp[x* PS(.,t)] = exp[t*g(x)] = exp[x*h(y)d/dy] exp(t*y) eval. at y=0, the raising/creation and lowering/annihilation operators defined by R PS(n,t)=PS(n+1,t) and L PS(n,t) = n*PS(n-1,t) are
R = t*h(d/dt) = t* 1/[(u_1) + 2*(u_2)*d/dt + 3*(u_3)*(d/dt)^2 + ...] and
L = f(d/dt) = (u_1)*d/dt + (u_2)*(d/dt)^2 + (u_3)*(d/dt)^3 + ....
Then P(n,t) = (t^n/n!) dPS(n,z)/dz eval. at z=0. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.) (End)
The bracketed partition polynomials of P(n,t) are also given by (d/dx)^(n-1) 1/[u_1 + u_2 * x + u_3 * x^2 + ... + u_n * x^(n-1)]^n evaluated at x=0. - Tom Copeland, Jul 07 2015
From Tom Copeland, Sep 20 2016: (Start)
Let PS(n,u1,u2,...,un) = P(n,t) / t^n, i.e., the square-bracketed part of the partition polynomials in the expansion for the inverse in the comment section, with u_k = uk.
Also let PS(n,u1=1,u2,...,un) = PB(n,b1,b2,...,bK,...) where each bK represents the partitions of PS, with u1 = 1, that have K components or blocks, e.g., PS(5,1,u2,...,u5) = PB(5,b1,b2,b3,b4) = b1 + b2 + b3 + b4 with b1 = -u5, b2 = 6 u2 u4 + 3 u3^2, b3 = -21 u2^2 u3, and b4 = 14 u2^4.
The relation between solutions of the inviscid Burgers' equation and compositional inverse pairs (cf. A086810) implies that, for n > 2, PB(n, 0 * b1, 1 * b2, ..., (K-1) * bK, ...) = [(n+1)/2] * Sum_{k = 2..n-1} PS(n-k+1,u_1=1,u_2,...,u_(n-k+1)) * PS(k,u_1=1,u_2,...,u_k).
For example, PB(5,0 * b1, 1 * b2, 2 * b3, 3 * b4) = 3 * 14 u2^4 - 2 * 21 u2^2 u3 + 1 * 6 u2 u4 + 1 * 3 u3^2 - 0 * u5 = 42 u2^4 - 42 u2^2 u3 + 6 u2 u4 + 3 u3^2 = 3 * [2 * PS(2,1,u2) * PS(4,1,u2,...,u4) + PS(3,1,u2,u3)^2] = 3 * [ 2 * (-u2) (-5 u2^3 + 5 u2 u3 - u4) + (2 u2^2 - u3)^2].
Also, PB(n,0*b1,1*b2,...,(K-1)*bK,...) = d/dt t^(n-2)*PS(n,u1=1/t,u2,...,un)|{t=1} = d/dt (1/t)*PS(n,u1=1,t*u2,...,t*un)|{t=1}.
(End)
From Tom Copeland, Sep 22 2016: (Start)
Equivalent matrix computation: Multiply the m-th diagonal (with m=1 the index of the main diagonal) of the lower triangular Pascal matrix A007318 by f_m = m!*u_m = (d/dx)^m f(x) evaluated at x=0 to obtain the matrix UP with UP(n,k) = binomial(n,k) f_{n+1-k}, or equivalently multiply the diagonals of A132159 by u_m. Then P(n,t) = (1, 0, 0, 0, ...) [UP^(-1) * S]^(n-1) FC * t^n/n!, where S is the shift matrix A129185, representing differentiation in the basis x^n//n!, and FC is the first column of UP^(-1), the inverse matrix of UP. These results follow from A145271 and A133314.
Also, P(n,t) = (1, 0, 0, 0, ...) [UP^(-1) * S]^n (0, 1, 0, ...)^T * t^n/n! in agreement with A139605. (End)
A recursion relation for computing each partition polynomial of this entry from the lower order polynomials and the coefficients of the refined Lah polynomials of A130561 is presented in the blog entry "Formal group laws and binomial Sheffer sequences." - Tom Copeland, Feb 06 2018
The derivative of the partition polynomials of A350499 with respect to a distinguished indeterminate give polynomials proportional to those of this entry. The connection of this derivative relation to the inviscid Burgers-Hopf evolution equation is given in a reference for that entry. - Tom Copeland, Feb 19 2022

Extensions

Missing coefficient in P(6,t) replaced by Tom Copeland, Nov 06 2008
P(7,t) and P(8,t) data added by Tom Copeland, Jan 14 2016
Title modified by Tom Copeland, Jan 13 2020
Terms ordered according to the reversed Abramowitz-Stegun ordering of partitions (with every k' replaced by (k-1)') by Andrey Zabolotskiy, Mar 07 2024

A157400 A partition product with biggest-part statistic of Stirling_1 type (with parameter k = -2) as well as of Stirling_2 type (with parameter k = -2), (triangle read by rows).

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 24, 24, 24, 1, 80, 180, 120, 120, 1, 330, 1200, 1080, 720, 720, 1, 1302, 7770, 10920, 7560, 5040, 5040, 1, 5936, 57456, 102480, 87360, 60480, 40320, 40320, 1, 26784, 438984, 970704, 1103760, 786240, 544320, 362880, 362880
Offset: 1

Author

Peter Luschny, Mar 09 2009, Mar 14 2009

Keywords

Comments

Partition product of Product_{j=0..n-1} ((k+1)*j - 1) and n! at k = -2, summed over parts with equal biggest part (Stirling_2 type) as well as partition product of Product_{j=0..n-2} (k-n+j+2) and n! at k = -2 (Stirling_1 type).
It shares this property with the signless Lah numbers.
Underlying partition triangle is A130561.
Same partition product with length statistic is A105278.
Diagonal a(A000217) = A000142.
Row sum is A000262.
T(n,k) is the number of nilpotent elements in the symmetric inverse semigroup (partial bijections) on [n] having index k. Equivalently, T(n,k) is the number of directed acyclic graphs on n labeled nodes with every node having indegree and outdegree at most one and the longest path containing exactly k nodes. - Geoffrey Critzer, Nov 21 2021

Examples

			Triangle starts:
  1;
  1,   2;
  1,   6,    6;
  1,  24,   24,   24;
  1,  80,  180,  120, 120;
  1, 330, 1200, 1080, 720, 720;
  ...
		

Programs

  • Maple
    egf:= k-> exp((x^(k+1)-x)/(x-1))-exp((x^k-x)/(x-1)):
    T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Oct 10 2015
  • Mathematica
    egf[k_] := Exp[(x^(k+1)-x)/(x-1)] - Exp[(x^k-x)/(x-1)]; T[n_, k_] := n! * SeriesCoefficient[egf[k], {x, 0, n}]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 11 2015, after Alois P. Heinz *)

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n.
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,...,a_n such that
1*a_1 + 2*a_2 + ... + n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = Product_{j=0..n-1} (-j-1)
OR f_n = Product_{j=0..n-2} (j-n) since both have the same absolute value n!.
E.g.f. of column k: exp((x^(k+1)-x)/(x-1))-exp((x^k-x)/(x-1)). - Alois P. Heinz, Oct 10 2015

A127671 Cumulant expansion numbers: Coefficients in expansion of log(1 + Sum_{k>=1} x[k]*(t^k)/k!).

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -4, -3, 12, -6, 1, -5, -10, 20, 30, -60, 24, 1, -6, -15, -10, 30, 120, 30, -120, -270, 360, -120, 1, -7, -21, -35, 42, 210, 140, 210, -210, -1260, -630, 840, 2520, -2520, 720, 1, -8, -28, -56, -35, 56, 336, 560, 420, 560, -336, -2520, -1680, -5040, -630, 1680, 13440, 10080, -6720
Offset: 1

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

Connected objects from general (disconnected) objects.
The row lengths of this array is p(n):=A000041(n) (partition numbers).
In row n the partitions of n are taken in the Abramowitz-Stegun order.
One could call the unsigned numbers |a(n,k)| M_5 (similar to M_0, M_1, M_2, M_3 and M_4 given in A111786, A036038, A036039, A036040 and A117506, resp.).
The inverse relation (disconnected from connected objects) is found in A036040.
(d/da(1))p_n[a(1),a(2),...,a(n)] = n b_(n-1)[a(1),a(2),...,a(n-1)], where p_n are the partition polynomials of the cumulant generator A127671 and b_n are the partition polynomials for A133314. - Tom Copeland, Oct 13 2012
See notes on relation to Appell sequences in a differently ordered version of this array A263634. - Tom Copeland, Sep 13 2016
Given a binomial Sheffer polynomial sequence defined by the e.g.f. exp[t * f(x)] = Sum_{n >= 0} p_n(t) * x^n/n!, the cumulants formed from these polynomials are the Taylor series coefficients of f(x) multipied by t. An example is the sequence of the Stirling polynomials of the first kind A008275 with f(x) = log(1+x), so the n-th cumulant is (-1)^(n-1) * (n-1)! * t. - Tom Copeland, Jul 25 2019
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)
Ignoring signs, these polynomials appear in Schröder in the set of equations (II) on p. 343 and in Stewart's translation on p. 31. - Tom Copeland, Aug 25 2021

Examples

			Row n=3: [1,-3,2] stands for the polynomial 1*x[3] - 3*x[1]*x[2] + 2*x[1]^3 (the Abramowitz-Stegun order of the p(3)=3 partitions of n=3 is [3],[1,2],[1^3]).
		

References

  • C. Itzykson and J.-M. Drouffe, Statistical field theory, vol. 2, p. 413, eq.(13), Cambridge University Press, (1989).

Crossrefs

Formula

E.g.f. for multivariate row polynomials A(t) := log(1 + Sum_{k>=1} x[k]*(t^k)/k!).
Row n polynomial p_n(x[1],...,x[n]) = [(t^n)/n!]A(t).
a(n,m) = A264753(n, m) * M_3(n,m) with M_3(n,m) = A036040(n,m) (Abramowitz-Stegun M_3 numbers). - corrected by Johannes W. Meijer, Jul 12 2016
p_n(x[1],...,x[n]) = -(n-1)!*F(n,x[1],x[2]/2!,..,x[n]/n!) in terms of the Faber polynomials F(n,b1,..,bn) of A263916. - Tom Copeland, Nov 17 2015
With D = d/dz and M(0) = 1, the differential operator R = z + d(log(M(D))/dD = z + d(log(1 + x[1] D + x[2] D^2/2! + ...))/dD = z + p.*exp(p.D) = z + Sum_{n>=0} p_(n+1)(x[1],..,x[n]) D^n/n! is the raising operator for the Appell sequence A_n(z) = (z + x[.])^n = Sum_{k=0..n} binomial(n,k) x[n-k] z^k with the e.g.f. M(t) e^(zt), i.e., R A_n(z) = A_(n+1)(z) and dA_n(z)/dz = n A_(n-1)(z). The operator Q = z - p.*exp(p.D) generates the Appell sequence with e.g.f. e^(zt) / M(t). - Tom Copeland, Nov 19 2015
Showing 1-10 of 21 results. Next