A130566 Pyramidal 47-gonal numbers.
1, 48, 186, 460, 915, 1596, 2548, 3816, 5445, 7480, 9966, 12948, 16471, 20580, 25320, 30736, 36873, 43776, 51490, 60060, 69531, 79948, 91356, 103800, 117325, 131976, 147798, 164836, 183135, 202740, 223696, 246048, 269841, 295120, 321930, 350316, 380323, 411996
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A000217.
Programs
-
Magma
I:=[1, 48, 186, 460]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 29 2012
-
Mathematica
CoefficientList[Series[(1+44*x)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 29 2012 *) LinearRecurrence[{4,-6,4,-1},{1,48,186,460},40] (* Harvey P. Dale, Jul 07 2025 *)
Formula
a(n) = (15*n + 1)*(n + 2)*(n + 1)/2.
G.f.: (1+44*x)/(1-x)^4. - Colin Barker, Apr 30 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*(15*x^3 + 91*x^2 + 94*x + 2)/2.
a(n) = (15*n+1)*A000217(n+1). (End)