A292576 Permutation of the natural numbers partitioned into quadruples [4k-1, 4k-3, 4k-2, 4k], k > 0.
3, 1, 2, 4, 7, 5, 6, 8, 11, 9, 10, 12, 15, 13, 14, 16, 19, 17, 18, 20, 23, 21, 22, 24, 27, 25, 26, 28, 31, 29, 30, 32, 35, 33, 34, 36, 39, 37, 38, 40, 43, 41, 42, 44, 47, 45, 46, 48, 51, 49, 50, 52, 55, 53, 54, 56, 59, 57, 58, 60, 63, 61, 62
Offset: 1
Keywords
Links
- Guenther Schrack, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Inverse: A056699(n+1) - 1 for n > 0.
Sequence of fixed points: A008586(n) for n > 0.
Subsequences:
elements with even index: A042948(n) for n > 0.
odd elements: A166519(n) for n>0.
indices of odd elements: A042963(n) for n > 0.
even elements: A005843(n) for n>0.
indices of even elements: A014601(n) for n > 0.
Sum of pairs of elements:
Difference between pairs of elements:
Compound relations:
a(n) = A284307(n+1) - 1 for n > 0.
Compositions:
Programs
-
MATLAB
a = [3 1 2 4]; % Generate b-file max = 10000; for n := 5:max a(n) = a(n-4) + 4; end;
-
PARI
for(n=1, 10000, print1(n + ((-1)^(n*(n-1)/2)*(2 - (-1)^n) - (-1)^n)/2, ", "))
Formula
a(1)=3, a(2)=1, a(3)=2, a(4)=4, a(n) = a(n-4) + 4 for n > 4.
O.g.f.: (2*x^3 + x^2 - 2*x + 3)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^(n*(n-1)/2)*(2-(-1)^n) - (-1)^n)/2.
a(n) = n + (cos(n*Pi/2) - cos(n*Pi) + 3*sin(n*Pi/2))/2.
a(n) = n + n mod 2 + (ceiling(n/2)) mod 2 - 2*(floor(n/2) mod 2).
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
Comments