cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130620 Defined in comments.

Original entry on oeis.org

3, 9, 31, 106, 365, 1263, 4388, 15336, 53871, 190059, 673222, 2393291, 8535397, 30526712, 109449848, 393272258, 1415768769, 5105086517, 18434398665, 66647658995, 241210652738, 873773659486, 3167642169823, 11491042716338, 41708741708554, 151461799255253
Offset: 0

Views

Author

Paul Curtz, Jun 18 2007

Keywords

Comments

Given any sequence {u(i), i >= 0} we define a family of polynomials by P(0,x) = u(0), P(n,x) = u(n) + x*Sum_{i=0..n-1} u(i)*P(n-i-1, x).
Then a(n) is the sum of the odd coefficients of P(n,x) if n is odd and a(n) is the sum of the even coefficients otherwise: a(n) = ((-1)^n*P(n,-1) + P(n,1))/2.
For the present example we take {u(i)} to be 3,1,4,1,5,9,... (A000796).

Examples

			We have P(0,x)=3, P(1,x)=1+9x, P(2,x)=4+6x+27x^2, ..., so that for example a(2) = (25+37)/2 = 31.
The polynomials P(n,x) are:
n=0: 3,
n=1: 1+ 9*x,
n=2: 4+ 6*x+ 27*x^2,
n=3: 1+25*x+ 27*x^2+ 81*x^3,
n=4: 5+14*x+117*x^2+108*x^3+243*x^4,
n=5: 9+48*x+100*x^2+486*x^3+405*x^4+729*x^5.
		

References

  • P. Curtz, Gazette des Mathematiciens, 1992, 52, p.44.
  • P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, 55, pp.67-78 .

Crossrefs

See A141411 for another version.

Programs

  • Maple
    u:= proc(n) Digits:= max(n+10);
           trunc(10* frac(evalf(Pi*10^(n-1))))
        end:
    P:= proc(n) option remember; local i, x;
          if n=0 then u(0)
        else unapply(expand(u(n)+x*add(u(i)*P(n-i-1)(x), i=0..n-1)), x)
          fi
        end:
    a:= n-> (P(n)(1) +(-1)^n*P(n)(-1))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2009
  • Mathematica
    nmax = 25; digits = RealDigits[Pi, 10, nmax+1][[1]]; p[0][] = digits[[1]]; p[n][x_] := p[n][x] = digits[[n+1]] + x*Sum[digits[[i+1]] p[n-i-1][x], {i, 0, n-1}]; a[n_] := (p[n][1] + (-1)^n*p[n][-1])/2; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 22 2012 *)

Formula

a(n) ~ c * d^n, where d = 3.6412947999106071671946396356753... (same as for A141411), c = 1.38770526630795733403509218... . - Vaclav Kotesovec, Sep 12 2014

Extensions

Edited by N. J. A. Sloane, Aug 26 2009
Definition corrected and more terms from Alois P. Heinz, Sep 06 2009