A130620 Defined in comments.
3, 9, 31, 106, 365, 1263, 4388, 15336, 53871, 190059, 673222, 2393291, 8535397, 30526712, 109449848, 393272258, 1415768769, 5105086517, 18434398665, 66647658995, 241210652738, 873773659486, 3167642169823, 11491042716338, 41708741708554, 151461799255253
Offset: 0
Examples
We have P(0,x)=3, P(1,x)=1+9x, P(2,x)=4+6x+27x^2, ..., so that for example a(2) = (25+37)/2 = 31. The polynomials P(n,x) are: n=0: 3, n=1: 1+ 9*x, n=2: 4+ 6*x+ 27*x^2, n=3: 1+25*x+ 27*x^2+ 81*x^3, n=4: 5+14*x+117*x^2+108*x^3+243*x^4, n=5: 9+48*x+100*x^2+486*x^3+405*x^4+729*x^5.
References
- P. Curtz, Gazette des Mathematiciens, 1992, 52, p.44.
- P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, 55, pp.67-78 .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
See A141411 for another version.
Programs
-
Maple
u:= proc(n) Digits:= max(n+10); trunc(10* frac(evalf(Pi*10^(n-1)))) end: P:= proc(n) option remember; local i, x; if n=0 then u(0) else unapply(expand(u(n)+x*add(u(i)*P(n-i-1)(x), i=0..n-1)), x) fi end: a:= n-> (P(n)(1) +(-1)^n*P(n)(-1))/2: seq(a(n), n=0..30); # Alois P. Heinz, Sep 06 2009
-
Mathematica
nmax = 25; digits = RealDigits[Pi, 10, nmax+1][[1]]; p[0][] = digits[[1]]; p[n][x_] := p[n][x] = digits[[n+1]] + x*Sum[digits[[i+1]] p[n-i-1][x], {i, 0, n-1}]; a[n_] := (p[n][1] + (-1)^n*p[n][-1])/2; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 22 2012 *)
Formula
a(n) ~ c * d^n, where d = 3.6412947999106071671946396356753... (same as for A141411), c = 1.38770526630795733403509218... . - Vaclav Kotesovec, Sep 12 2014
Extensions
Edited by N. J. A. Sloane, Aug 26 2009
Definition corrected and more terms from Alois P. Heinz, Sep 06 2009
Comments